finsler geometry, hypercomplex numbers and physics
HOME | ABOUT | JOURNAL | ARTICLES | POLYNUMBERS | ALL SECTIONS | FORUM | LOGIN    
SECTIONS
News
All articles
Journal
Polynumbers
Archive
Books
Finsler Prize
Prizes & Competitions
Institute
Moscow, FERT-2019
Moscow, FERT-2018
Murom, FERT-2017
Murom, FERT-2016
Murom, FERT-2015
Brasov FERT-2014
Debrecen FERT-2013
Roger Penrose - 2013
Moscow, FERT-2012
Braşov FERT-2011
Moscow FERT-2010
Moscow FERT-2009
Cairo FERT-2008
Moscow FERT-2007
Cairo FERT-2006
FinslerSchool "Wood Lake"
Conferences
Seminars
Films
Presentations
Foto
Pyramides
Software
Drafts
SEARCH
Journal
Prizes & Competitions

A self-sufficiency principle in Finsler geometry
2009jax | G.I. Garas'ko  // HSGPH, Electrotechnical Institute of Russia, Moscow, Russia, gri9z@mail.ru

By using the self-suuficiency principle of Finsler geometry, one can derive the field equations, where the gravitational field and electromagnetic field naturally join together as in the pseudo- Riemannian 4D space as well as in the curvilinear Berwald-Moor 4D space; there always exists an energy-momentum tensor related to conservation laws. It has been shown that, in the approximation of small fields, the new geometric approach in the field theory following from the self-sufficiency principle of the Finsler geometry can result in linear field equations valid for several independent fields. When the strength of the fields increases, which means the use of the second approximation, the field equations become generally nonlinear and the fields loose independence that leads to the violation of the superposition principle for each separate field, and results in the interaction among different fields.


English: Russian:
11-03.pdf, 672,286 Kb, PDF

Rambler's Top100