finsler geometry, hypercomplex numbers and physics
HOME | ABOUT | JOURNAL | ARTICLES | POLYNUMBERS | ALL SECTIONS | FORUM | LOGIN    
SECTIONS
News
All articles
Journal
Polynumbers
Archive
Books
Finsler Prize
Prizes & Competitions
Institute
Moscow, FERT-2019
Moscow, FERT-2018
Murom, FERT-2017
Murom, FERT-2016
Murom, FERT-2015
Brasov FERT-2014
Debrecen FERT-2013
Roger Penrose - 2013
Moscow, FERT-2012
Braşov FERT-2011
Moscow FERT-2010
Moscow FERT-2009
Cairo FERT-2008
Moscow FERT-2007
Cairo FERT-2006
FinslerSchool "Wood Lake"
Conferences
Seminars
Films
Presentations
Foto
Pyramides
Software
Drafts
SEARCH
Journal
Prizes & Competitions

Spectral properties and applications of the numerical multilinear algebra of m-root structures
2008jbr | V. Balan  // University Politehnica of Bucharest, Faculty of Applied Sciences; vbalan@mathem.pub.ro

In the framework of supersymmetric tensors and multivariate homogeneous polynomials, the talk discusses the 4-th order Berwald-Moor case. The eigenvalues and eigenvectors are determined; the recession and degeneracy vectors, characterization points, rank, asymptotic rays, base index, are studied. As well, the best rank-one approximation is derived, relations to the Berwald-Moor poly-angles are pointed out, and a brief outlook on real-world applications is provided.


English: Russian:
10-09.pdf, 603,396 Kb, PDF

Rambler's Top100