finsler geometry, hypercomplex numbers and physics
HOME | ABOUT | JOURNAL | ARTICLES | POLYNUMBERS | ALL SECTIONS | FORUM | LOGIN    
SECTIONS
News
All articles
Journal
Polynumbers
Archive
Books
Finsler Prize
Prizes & Competitions
Institute
Moscow, FERT-2019
Moscow, FERT-2018
Murom, FERT-2017
Murom, FERT-2016
Murom, FERT-2015
Brasov FERT-2014
Debrecen FERT-2013
Roger Penrose - 2013
Moscow, FERT-2012
Braşov FERT-2011
Moscow FERT-2010
Moscow FERT-2009
Cairo FERT-2008
Moscow FERT-2007
Cairo FERT-2006
FinslerSchool "Wood Lake"
Conferences
Seminars
Films
Presentations
Foto
Pyramides
Software
Drafts
SEARCH
Journal
Prizes & Competitions

Properties of spaces associated with commutative-associative H3 and H4 algebras
2004jau | Lebedev S. V.

In the first part of this work a real axis of the space associated with the H3 algebra and the lines parallel to this axis are interpreted as the world lines of resting particles; surface of simultaneity is used for introduction of a distance between the real axis and a line parallel thereto. The coordinate system similar to a polar one can be introduced on this surface such that this allows us to reveal its simplest invariant transformations. In the second part of this paper the Lorentz transformations in form of special kind of rotations in the space associated with H4 algebra are presented.


English: Russian:
01-06-e.pdf, 300,840 Kb, PDF 01-06.pdf, 617,769 Kb, PDF

Rambler's Top100