finsler geometry, hypercomplex numbers and physics
HOME | ABOUT | JOURNAL | ARTICLES | POLYNUMBERS | ALL SECTIONS | FORUM | LOGIN    
SECTIONS
News
All articles
Journal
Polynumbers
Archive
Books
Finsler Prize
Prizes & Competitions
Institute
Moscow, FERT-2019
Moscow, FERT-2018
Murom, FERT-2017
Murom, FERT-2016
Murom, FERT-2015
Brasov FERT-2014
Debrecen FERT-2013
Roger Penrose - 2013
Moscow, FERT-2012
Braşov FERT-2011
Moscow FERT-2010
Moscow FERT-2009
Cairo FERT-2008
Moscow FERT-2007
Cairo FERT-2006
FinslerSchool "Wood Lake"
Conferences
Seminars
Films
Presentations
Foto
Pyramides
Software
Drafts
SEARCH
Journal
Prizes & Competitions

Generalization jf Scalar Product Axioms
2004jay | Pavlov D. G.

The concept of scalar product is vital in studying basic properties of either Euclidean or pseudo-Euclidean spaces. A generalizing of a special sub-class of Finslerian spaces, that we will call the polylinear, is presented in the work. The idea of scalar polyproduct and of related fundamental metric polyform has been introduced axiomatically. The definition of different metric parameters such as the vector length and the angle between vectors are founded on the idea. The concept of orthogonallity is also generalized. Some peculiarities of the geometry of the four-dimensional linear Finslerian space related to the algebra of commutative-associative hypercomplex numbers, that are called Quadranumerical, are proved in the concrete polyform.


English: Russian:
01-02-e.pdf, 252,553 Kb, PDF 01-02.pdf, 578,823 Kb, PDF

Rambler's Top100