Финслеровы геометрии, гиперкомплексные числа и физика
ГЛАВНАЯ | О САЙТЕ | ЖУРНАЛ | СТАТЬИ | ПОЛИЧИСЛА | ВСЕ СЕКЦИИ | ФОРУМ | ВХОД    
СЕКЦИИ
Новости
Все статьи
Журнал
Поличисла
Архив
Книги
Финслерова премия
Премии и конкурсы
Институт
Муром, FERT-2017
Муром, FERT-2016
Муром, FERT-2015
Брашов FERT-2014
Дебречен FERT-2013
Роджер Пенроуз - 2013
Москва, FERT-2012
Брашов FERT-2011
Москва FERT-2010
Москва FERT-2009
Каир FERT-2008
Москва FERT-2007
Каир FERT-2006
Школа-семинар "Лес.Озеро"
Конференции
Семинары
Фильмы
Презентации
Фото
Пирамиды
Программы
Черновики
ПОИСК
Журнал
Премии и конкурсы

ИНТЕГРИРОВАНИЕ ВДОЛЬ ПУТЕЙ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ВТОРОГО ПОРЯДКА НАД АЛГЕБРАМИ КЭЛИ-ДИКСОНА
2011jqw | Людковский С.В.  // Московский государственный технический университет МИРЭА, Москва, Россия, sludkowski@mail.ru

Представлены результаты исследования многоуровневой системы взаимосвязанных молекулярно-генетических алфавитов на основе применения матричных методов теории помехоустойчивого кодирования. Эти исследования выявили связи данной системы алфавитов с системами гиперкомплексных чисел (кватернионами Гамильтона и сплит-кватернионами Кокла и их расширениями), кронекеровскими семействами матриц, ортогональными системами функций Радемахера и Уолша, матрицами Адамара и др. Отмечаются структурные параллелизмы между системой молекулярно-генетических алфавитов и системой наследования признаков у целостных организмов, подчиняющейся законам Менделя и представляемой классическими решетками Пеннета. Система молекулярно-генетических алфавитов, общая для всех живых организмов, своими алгебраическими свойствами подсказывает новый - алгебраический - путь познания живой материи и развития алгебраической биологии, связанной с гиперкомплексными числами. Живая материя, обеспечивающая передачу наследственной информации по цепи поколений, предстает информационной сущностью, глубоко алгебраичной по своей природе.


English: Russian:
07_ludkovsky(139-).pdf, 459,1020 Kb, PDF

Rambler's Top100