Финслеровы геометрии, гиперкомплексные числа и физика
ГЛАВНАЯ | О САЙТЕ | ЖУРНАЛ | СТАТЬИ | ПОЛИЧИСЛА | ВСЕ СЕКЦИИ | ФОРУМ | ВХОД    
СЕКЦИИ
Новости
Все статьи
Журнал
Поличисла
Архив
Книги
Финслерова премия
Премии и конкурсы
Институт
Москва, FERT-2018
Муром, FERT-2017
Муром, FERT-2016
Муром, FERT-2015
Брашов FERT-2014
Дебречен FERT-2013
Роджер Пенроуз - 2013
Москва, FERT-2012
Брашов FERT-2011
Москва FERT-2010
Москва FERT-2009
Каир FERT-2008
Москва FERT-2007
Каир FERT-2006
Школа-семинар "Лес.Озеро"
Конференции
Семинары
Фильмы
Презентации
Фото
Пирамиды
Программы
Черновики
ПОИСК
Журнал
Премии и конкурсы

The Berwald-Moor metric in the tangent bundle of the second order
2005jbo | Gheorghe Atanasiu, Nicoleta Brinzei

As an application of the results of the first author obtained in the papers \cite{1} and \cite{2}, the geometry of the second order tangent bundle $% T^{2}M$ (or second order jet bundle $J_{0}^{2}M$) endowed with two special types of metrics compatible with the 2-contact structures is studied. The particularity of these two models is that the horizontal and the $v^{(1)}$-\ part of the metric are both given by the same Riemannian metric (respectively, its horizontal part is Riemannian), while its $v^{(2)}$-part is given by the flag-Finsler Berwald-Moor metric (respectively, the $v^{(1)} $ and $v^{(2)}$- parts are given by the flag-Finsler Berwald-Moor metric, \cite{Mangalia}).


English: Russian:
04-12.pdf, 249,589 Kb, PDF

Rambler's Top100