Финслеровы геометрии, гиперкомплексные числа и физика
ГЛАВНАЯ | О САЙТЕ | ЖУРНАЛ | СТАТЬИ | ПОЛИЧИСЛА | ВСЕ СЕКЦИИ | ФОРУМ | ВХОД    
СЕКЦИИ
Новости
Все статьи
Журнал
Поличисла
Архив
Книги
Финслерова премия
Премии и конкурсы
Институт
Москва, FERT-2018
Муром, FERT-2017
Муром, FERT-2016
Муром, FERT-2015
Брашов FERT-2014
Дебречен FERT-2013
Роджер Пенроуз - 2013
Москва, FERT-2012
Брашов FERT-2011
Москва FERT-2010
Москва FERT-2009
Каир FERT-2008
Москва FERT-2007
Каир FERT-2006
Школа-семинар "Лес.Озеро"
Конференции
Семинары
Фильмы
Презентации
Фото
Пирамиды
Программы
Черновики
ПОИСК
Журнал
Премии и конкурсы

The 2-Cotangent Bundle with Berwald-Moor Metric
2005jbp | Gheorghe Atanasiu, Vladimir Balan  // Transilvania University, Brasov, Romania; University Politehnica of Bucharest, Department Mathematics I, Romania

On the total space of the dual bundle $(T^{\ast 2}M,\pi ^{\ast 2},M)$ of the $2-$tangent bundle $(T^{2}M, \pi ^{2},M)$, the paper develops results related to the notions: of nonlinear connection, distinguished tensor fields, almost contact structure, Riemannian structures, $N-$linear connections and associated convariant derivations. The Ricci identities are derived and the local expressions of the corresponding $d-$tensors of torsion and curvature are provided. Further, the metric structures and the metric $N-$linear connections are studied, and the obtained results are specialized to the case when the metric tensor field is of Berwald-Moor type.


English: Russian:
04-11.pdf, 332,650 Kb, PDF
Посмотреть комментарии / View comments

Rambler's Top100