Финслеровы геометрии, гиперкомплексные числа и физика
ГЛАВНАЯ | О САЙТЕ | ЖУРНАЛ | СТАТЬИ | ПОЛИЧИСЛА | ВСЕ СЕКЦИИ | ФОРУМ | ВХОД    
СЕКЦИИ
Новости
Все статьи
Журнал
Поличисла
Архив
Книги
Финслерова премия
Премии и конкурсы
Институт
Москва, FERT-2018
Муром, FERT-2017
Муром, FERT-2016
Муром, FERT-2015
Брашов FERT-2014
Дебречен FERT-2013
Роджер Пенроуз - 2013
Москва, FERT-2012
Брашов FERT-2011
Москва FERT-2010
Москва FERT-2009
Каир FERT-2008
Москва FERT-2007
Каир FERT-2006
Школа-семинар "Лес.Озеро"
Конференции
Семинары
Фильмы
Презентации
Фото
Пирамиды
Программы
Черновики
ПОИСК
Журнал
Премии и конкурсы

4-импульс частицы и уравнение массовой поверхности в полностью анизотропном пространстве-времени
2005jbv | Богословский Г. Ю.

Работа посвящена исследованию модели плоского полностью анизотропного пространства-времени, метрика которого является обобщением финслеровой метрики Бервальда-Моора. Действие для массивной частицы в таком анизотропном пространстве определено исходя из соображений релятивистской инвариантности и минимальности на прямой мировой линии. С помощью вариационного принципа получены формулы, связывающие канонический 4-импульс частицы с ее 3-скоростью. Показано, что соответствующая массовая поверхность является инвариантом группы релятивистской симметрии полностью анизотропного пространства-времени.


English: Russian:
04-05.pdf, 302,215 Kb, PDF

Rambler's Top100