Финслеровы геометрии, гиперкомплексные числа и физика
ГЛАВНАЯ | О САЙТЕ | ЖУРНАЛ | СТАТЬИ | ПОЛИЧИСЛА | ВСЕ СЕКЦИИ | ФОРУМ | ВХОД    
СЕКЦИИ
Новости
Все статьи
Журнал
Поличисла
Архив
Книги
Финслерова премия
Премии и конкурсы
Институт
Москва, FERT-2018
Муром, FERT-2017
Муром, FERT-2016
Муром, FERT-2015
Брашов FERT-2014
Дебречен FERT-2013
Роджер Пенроуз - 2013
Москва, FERT-2012
Брашов FERT-2011
Москва FERT-2010
Москва FERT-2009
Каир FERT-2008
Москва FERT-2007
Каир FERT-2006
Школа-семинар "Лес.Озеро"
Конференции
Семинары
Фильмы
Презентации
Фото
Пирамиды
Программы
Черновики
ПОИСК
Журнал
Премии и конкурсы

Некоторые свойства скалярных кватернионов
2005jaw | Смирнов А. В.

Рассмотрена коммутативная алгебра бикомплексных чисел с метрикой $(+--+)$. Подобно обычным комплексным числам, эта алгебра 4-го ранга обладает свойствами деления, сопряжения, извлечения корня и факторизации наряду с прямым аналогом формулы Эйлера. Показано, что вращения представимы в этой алгебре без нарушения коммутативности. Наличие делителей нуля неразрывно связано с релятивистским интервалом.


English: Russian:
03-04.pdf, 490,772 Kb, PDF

Rambler's Top100