Финслеровы геометрии, гиперкомплексные числа и физика
ГЛАВНАЯ | О САЙТЕ | ЖУРНАЛ | СТАТЬИ | ПОЛИЧИСЛА | ВСЕ СЕКЦИИ | ФОРУМ | ВХОД    
СЕКЦИИ
Новости
Все статьи
Журнал
Поличисла
Архив
Книги
Финслерова премия
Премии и конкурсы
Институт
Муром, FERT-2016
Муром, FERT-2015
Брашов FERT-2014
Дебречен FERT-2013
Роджер Пенроуз - 2013
Москва, FERT-2012
Брашов FERT-2011
Москва FERT-2010
Москва FERT-2009
Каир FERT-2008
Москва FERT-2007
Каир FERT-2006
Школа-семинар "Лес.Озеро"
Конференции
Семинары
Фильмы
Презентации
Фото
Пирамиды
Программы
Черновики
ПОИСК
Журнал
Премии и конкурсы

Обобщение аксиом скалярного произведения
2004jay | Павлов Д. Г.

При изучении многих свойств как евклидовых, так и псевдоевклидовых пространств, необходимо понятие скалярного произведения. В настоящей работе обобщение этого понятия проводится применительно к специальному подклассу финслеровых пространств, которые предложено называть полилинейными. Для этого аксиоматически вводятся понятия скалярного полипроизведения и связанной с ним фундаментальной метрической полиформы, отталкиваясь от которых определяются различные метрические параметры, такие как длины векторов и углы между ними, а также обобщается понятие ортогональности направлений. На примере конкретной полиформы рассмотрены некоторые особенности геометрии четырехмерного линейного финслерова пространства, связанного с алгеброй коммутативно-ассоциативных гиперкомплексных чисел и названного квадрачисловым.


English: Russian:
01-02-e.pdf, 252,553 Kb, PDF 01-02.pdf, 578,823 Kb, PDF

Rambler's Top100