finsler geometry, hypercomplex numbers and physics
HOME | ABOUT | JOURNAL | ARTICLES | POLYNUMBERS | ALL SECTIONS | FORUM | LOGIN    
SECTIONS
News
All articles
Journal
Polynumbers
Archive
Books
Finsler Prize
Prizes & Competitions
Institute
Moscow, FERT-2019
Moscow, FERT-2018
Murom, FERT-2017
Murom, FERT-2016
Murom, FERT-2015
Brasov FERT-2014
Debrecen FERT-2013
Roger Penrose - 2013
Moscow, FERT-2012
Braşov FERT-2011
Moscow FERT-2010
Moscow FERT-2009
Cairo FERT-2008
Moscow FERT-2007
Cairo FERT-2006
FinslerSchool "Wood Lake"
Conferences
Seminars
Films
Presentations
Foto
Pyramides
Software
Drafts
SEARCH
Journal
Prizes & Competitions

Deformation principle as foundation of physical geometry and its application to space-time geometry
2004jbu | Rylov Yuri A.

Physical geometry studies mutual disposition of geometrical objects and points in space, or space-time, which is described by the distance function $% d$, or by the world function $\sigma =d^{2}/2$. One suggests a new general method of the physical geometry construction. The proper Euclidean geometry is described in terms of its world function $\sigma _{\mathrm{E}}$. Any physical geometry $\mathcal{G}$ is obtained from the Euclidean geometry as a result of replacement of the Euclidean world function $\sigma _{\mathrm{E}}$ by the world function $\sigma $ of $\mathcal{G}$. This method is very simple and effective. It introduces a new geometric property: nondegeneracy of geometry. Using this method, one can construct deterministic space-time geometries with primordially stochastic motion of free particles and geometrized particle mass. Such a space-time geometry defined properly (with quantum constant as an attribute of geometry) allows one to explain quantum effects as a result of the statistical description of the stochastic particle motion (without a use of quantum principles).


English: Russian:
02-06.pdf, 678,656 Kb, PDF

Rambler's Top100