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ON THE FINSLERIAN MECHANICAL SYSTEMS

Radu Miron

University Transilvania of Brasov, Brasov, Romania

The notion of Finslerian Mechanical Systems was been introduced by author as a triple
Yr = (M,Ep, Fe) formed by configuration space M, kinetic energy Er of a semidefinite
Finsler space F™ = (M, F') and the external forces Fe. Fundamental equations of ¥p are
the Lagrange equations. One determines the canonical semispray S and proves that the
integral curves of S are the evolution curves of X p. Thus, the geometrical theory of the
Finslerian mechanical systems X can be studied by means of dynamical systems S on
the velocity space T'M.

Key Words: semidefinite Finsler space, Finslerian mechanical systems.

Introduction

My lecture to The VIIIth International Conference “Finsler Extensions of Relativity Theory”,
Moscow, July—August, 2012, is a survey on the Analytical Mechanics of Finslerian Mechanics,
introduced by author in the papers [5, 12, 16, 17, 21|. These systems are defined by a triple
Yp = (M, F? Fe) where M is the configuration space, F(z,y) is the fundamental function of
a semidefinite Finsler space F* = (M, F(z,y)) and Fe(z,y) are the external forces. Of course,
F? is the kinetic energy of the space. The fundamental equations are the Lagrange equations:

d OF? OF?
dt 0zt oxt

Ei(F?) = = Fi(z, 2).

We study here the canonical semispray S of ¥ and the geometry of the pair (T'M,S), where
T M is velocity space, [17].

One obtain a generalization of the theory of Riemannian Mechanical Systems in the non-
conservative case. It has numerous applications and justifies the introduction of such new kind
of Analytical Mechanics.

1 Semidefinite Finsler spaces

Definition 1.1 A Finsler space with semidefinite Finsler metric is a pair F" = (M, F(z,y))
where the function F': TM — R satisfies the following axioms:

1° F is differentiable on TM and continuous on the null section of 7 : TM — M ;
2° F>0onTM,;
3° F is positive 1-homogeneous with respect to velocities &% = 7.

4° The fundamental tensor g;;(z,y)
1 0°F?
© 20yi0y

(1.1)

Gij

has a constant signature on ﬂ//l;

5° The Hessian of fundamental function F? with elements g;;(x,y) is nonsingular:

det(g;j(x,y)) # 0 on TM. (1.2)
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Example. If g;;(x) is a semidefinite Riemannian metric on M, then

F = /lg:(2)y'y| (1.3)

is a function with the property F™ = (M, F') is a semidefinite Finsler space.

Any Finsler space F" = (M, F(z,y)), in the sense of definition 1.1, is a definite Finsler
space. In this case the property 5° is automatical verified.

But, these two kind of Finsler spaces have a lot of common properties. Therefore, we will
speak in general on Finsler spaces. The following properties hold:

1° The fundamental tensor g;;(z,y) is 0-homogeneous;
2° F? = gy (@, y)y'y;

10F?
3° p; = ——— is d—covariant vector field;

2 0yt

4° The Cartan tensor

1 OF? 1 0g;
Cipg =~ = — 20 1.4
I 4 0yioyioyt 2 Oyt (14)
is totally symmetric and ‘
y’C’ijk = COjk = 0 (15)
5° w = pydat is 1-form on TM (the Cartan 1-form);
6° 0 = dw = dp; A dz' is 2-form (the Cartan 2-form);
7° The Euler-Lagrange equations of F™ are
d OF* OF? - dat
E(F)=————=0, y'= 1.6
(F7) dt Oy’ or? 4 dt (16)
8° The energy Ep of F™ is
Er = ian—F2—F2 (1.7)
F=Y By = .

9°  The energy Er is conserved along to every integral curve of Euler-Lagrange equations (1.6);
10°  In the canonical parametrization, the equations (1.6) give the geodesics of F™;
11°  The Euler-Lagrange equations (1.6) can be written in the equivalent form

B RE - < dm) dz? dx*

{ Ty 1.
gz T\ ) e e =Y (1.8)

. d
where 73, <x, d—f) are the Christoffel symbols of the fundamental tensor g;;(x,y).

12°  The canonical semispray S is

0 ) 0
S — Z—. — QGZ e 19
y axl (..'L', y) ayl ( )

with the coefficients: . _ . .
2G"(z,y) = Vi (z, V)y'y" = Yoo (2, ), (1.97)

(the index “0” means the contraction with y*).

13°  The canonical semispray S is 2-homogeneous with respect to *. So, S is a spray.



30 Hypercomplex Numbers in Geometry and Physics, 1(17), Vol 9, 2012

14°  The nonlinear connection N determined by S is also canonical and it is exactly the
famous Cartan nonlinear connection of the space F™. Its coefficients are

oG (xz,y) 10

Nij(l‘;y) = 8—yJ = §a—yj780(il‘,y). (1.10)

An equivalent form for the coefficients N ; is as follows

N = 7io(2,y) — Ciil@, y)v50(, y)- (1.10")

Consequently, we have ' ' '
Ny = 50 = 2G". (1.11)

Therefore, we can say: The semispray S’ determined by the Cartan nonlinear connection
N is the canonical spray S of space F™.

15°  The Cartan nonlinear connection N determines a splitting of vector space T, TM,
Vue TM of the form:
T.TM=N,&V,, YueTM (1.12)

b5 0
Thus, the adapted basis (5—, a—), (¢t = 1,..,n), to the previous splitting has the local
x'L y'L

vector fields — given by:
oxt

0 0 , 0
=~ Ni(z,y)——, i=1,.,n, 1.1
oxt  Oxt (z y>8y3 ’ " (1.13)

with the coefficients N*;(z,y) from (1.6).
Its dual basis is (dz’, dy'), where

Sy’ =dy' + N';(x,y)dz’. (1.14)

The autoparallel curves of the nonlinear connection N are given by, [5, 18|,

d*z’ i dz\ da’

Using the dynamic derivative V defined by N, the equations (1.11) can be written as follows

v (CZ) ~0. (1.11)

16°  The variational equations of the autoparallel curves (1.11) give the Jacobi equations:

, ON*; dz’ , - dxd dz*
4+ | ——t—=—-N "+ R, ——— =0. 1.16
v§+(8yk dt k>vf+ﬂ’“dt dt (1.16)
The vector field £(t) along a solution c(t) of the equations (1.11) and which verifies the
0gi;
previous equations is called a Jacobi field. In the Riemannian case, 89 ’z = 0, the Jacobi
Y
equations (1.12) are exactly the classical Jacobi equations:
P dzt dx?
V2 + Rip(a)—-——& =0 (1.17)
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17° A distinguished metric connections D with the coefficients CT'(N) = (Fj, Ci,) is defined
as a N-linear connection on T'M, metric with respect to the fundamental tensor g;;(z,y) of
Finsler space F", i.e. we have

09i s s
Jijlk = MZ — Fi9s5 — Fpgis = 0,
5 (1.18)
Gij s
gij|k - a_y,j CkgS] Cjkgis =0.

18°  The following theorem holds:
Theorem 1.1

1° There is an unique N-linear connection D, with coefficients CT(N) which satisfies the
following system of axioms: Ay. N is the Cartan nonlinear connection of Finsler space

F".
Ay. D is metm'cal, (z' e. D satisﬁes (2.1.14)).

2° The metric N-linear connection D has the coefficients CT'(N) = (F;k, C’ ) giwen by the
generalized Christoffel symbols

593 5gsk 6gk
Fz — J v J
ik 29 ((5:1;”C TS 51’5) ’

(1.19)

0gs; . Ogsk.  Ogjk

Ci = 4 = — 2
i 29 (a E T oy oy
20° By means of this theorem, it is not difficult to see that we have
gk = g Csyk (120)
and

Y =0. (1.21)

The Cartan nonlinear connection N determines on T'M an almost complex structure F, as

follows: 5 5 5 5
F(&ﬁ) :—8—yi, F(@y) =5 i=1,.,n. (1.22)

But one can see that F is the tensor field on TM:

F=-—

: ‘ : 1.22°
oy’ oxt ( )

with the 1-forms §y* and the vector field 51 given by (1.10), (1.9), (1.6).
ml

It is not difficult to prove that: The almost complex structure F is integrable if and only if
the distribution NV is integrable on T'M.

22°  The Sasaki-Matsumoto lift of the fundamental tensor g;; of Finsler space F™ is
G(z,y) = gij(z,y)dz' @ dz? + gij(z,y)0y’ @ 0y’ (1.23)

The tensor field G determines a pseudo-Riemannian structure on 7M.
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23° The following theorem is known:
Theorem 1.2.
1° The pair (G,F) is an almost Hermitian structure on TM determined only by the Finsler
space F™.

2° The symplectic structure associate to the structure (G,F) is the Cartan 2-form:
0 = 2g;;0y" A da’. (1)

3° The space (fz\?, G, F) is almost Kdhlerian.

The space H?" = (f]\?, G, F) is called the almost Kdihlerian model of the Finsler space F".

G.S. Asanov in the paper [5] proved that the metric G from (1.23) does not satisfies the
principle of the Post-Newtonian Calculus. This is due to the fact that the horizontal and
vertical terms of G do not have the same physical dimensions.

This is the reason for R. Miron to introduce a new lift of the fundamental tensor g;;,
[5, 17, 18], in the form:

~ . . 2 . .
G(z,y) = gij(z,y)dz’ @ da’ + H;ngij(x, Y)oy' @ dy’

where a > 0 is a real constant imposed by applications in Theoretical Physics and where
lyl|? = gij(z,y)y'y’ = F? has the property F? > 0. The lift G is 2-homogeneous with respect
to y'. The Sasaki-Matsumoto lift G has not the property of homogeneity, [8, 21].

Two examples:

1. Randers spaces. They have been defined by R. S. Ingarden as a triple RF™ = (M, a+ 3, N),
where a + [ is a Randers metric and N is the Cartan nonlinear connection of the Finsler
space F" = (M,a+ (), [13].

2. Ingarden spaces. These spaces have been defined by R. Miron, [5, 18|, as a triple TF™ =
(M,a+ (3, Np), where a+ [ is a Randers metric and Ny, is the Lorentz nonlinear connection
of F" = (M, a + () having the coefficients

. o . o . o . 1 . 858 ab
Nile,y) =Vi@)f— File), P = a(a) ( ) . @)

2 0zi  Ox®
The Christoffel symbols are constructed with the Riemannian metric tensor a;;(x) of the Rie-

mann space (M, o) and jg’;(x) is the electromagnetic tensor determined by the electromagnetic
form (o + ().

2 The notion of Finslerian mechanical system

As we know |5, 18|, the Riemannian mechanical systems Yz = (M, T, Fe) is defined as a triple

in which M is the configuration space, T is the kinetic energy and F'e are the external forces,
da’

which depend on the material point z € M and depend on velocities 3* =

Extending the previous ideas, we introduce the notion of Finslerian Mechanical System,
studied by author in the paper [17]. The shortly theory of this analytical mechanics can be
find in the joint book Finsler-Lagrange Geometry. Applications to Dynamical Systems, by loan
Bucataru and Radu Miron, Romanian Academy Press, Bucharest, 2007.
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In a different manner, M. de Leon and colab. [11], M. Crampin et colab. [17, 18|, have
studied such kind of new Mechanics. The time dependent case is considered in the book [4].
A Finslerian mechanical system X is defined as a triple

Sp = (M, Ep2, Fe) (2.1)

where M is a real differentiable manifold of dimension n, called the configuration space, Eg2 is
the energy of an a priori given Finsler space F" = (M, F(x,y)), which can be positive defined or
semidefined, and Fe(x,y) are the external forces given as a vertical vector field on the tangent
manifold 7M. We continue to say that T'M is the velocity space of M.

Evidently, the Finslerian mechanical system Y is a straightforward generalization of the
known notion of Riemannian mechanical system Yz obtained for g2 as kinetic energy of a
Riemann space R" = (M, g).

Therefore, we can introduce the evolution (or fundamental) equations of ¥z by means of
the following Postulate:

Postulate. The evolution equations of the Finslerian mechanical system X are the Lagrange
equations:

d 35};2 85F2 ; dl‘z
— = — = Fi(z,y), t = 2.2
dt oy' ozt (z,9) Y dt (2:2)
where the energy is
OF?
Ep =y —— — F* = F? 2.3
F2 y ayz ) ( )

and Fy(x,y), (i =1,..,n), are the covariant components of the external forces Fe:

, 0
Fe(z,y) = F'(x, y)a—yZ

(2.4)
Fi(z,y) = gij(z,y) (2, y),
and o2
1 O°F
is the fundamental (or metric) tensor of Finsler space F" = (M, F(x,y)).
Finally, the Lagrange equations of the Finslerian mechanical system are:
d OF* OF? . dxt
——— — —— = Fi(z,y), b= — 2.
dt 0yt ox? (z,9) Y dt (26)

A more convenient form of the previous equations is given by:

Theorem 2.1. The Lagrange equations (2.6) are equivalent to the second order differential
equations:
d*zt de\ do? dx* 1, dx
— + 7 — )| ——==F" — 2.7
gz <x dt) dt dt 2 (x dt)’ 27)

Proof. Writing the kinetic energy F?(z,y) in the form:

F*(z,y) = gi(z, v)y'y’, (2.8)

the equivalence of the systems of equations (2.6) and (2.7) is not difficult to establish.
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But, the form (2.7) is very convenient in applications. So, we obtain a first result expressed
in the following theorems:

Theorem 2.2. The trajectories of the Finslerian mechanical system Y g, without external
forces (Fe =0), are the geodesics of the Finsler space F™.

Indeed, F'(z,y) = 0 and the SODE (2.7) imply the equations (2.4) of geodesics of space F™.
A second important result is a consequence of the Lagrange equations, too.

Theorem 2.3. The variation of kinetic enerqy Ep2 = F? of the mechanical system Y along
the evolution curves (2.6) is given by
dSFQ d.’fz

— 2.9
dt dt (2.9)

Theorem 2.4. The kinetic enerqy Ep2 of the system X is conserved along the evolution curves
(2.6) if the external forces Fe are orthogonal to the evolution curves.

The external forces Fe are called dissipative if the scalar product (C, Fe) is negative, [17, 18|.

Theorem 2.5. The kinetic enerqy Ep= decreases along the evolution curves of the Finslerian
mechanical system X if and only if the external forces Fe are dissipative.

Some examples of Finslerian mechanical systems
1° The systems Xp = (M, Ep2, Fe) given by F™ = (M,a + () as a Randers space and Fe =
-0 )
pC = ﬁyza— Evidently Fe is 2-homogeneous with respect to y°.
yZ

2° ¥ determined by F™ = (M,a + ) and Fe = aC.
3° ¥p with F* = (M, + ) and Fe = (a+ )C.

. .0
4° ¥ defined by a Finsler space F™ = (M, F') and Fe = a;-k(a:)y]yka .
yl

, a%(x) being a sym-

metric tensor on the configuration space M of type (1,2).

3 The evolution semispray of the system X

The Lagrange equations (2.6) give us the integral curves of a remarkable semispray on the
velocity space T'M, which governed the geometry of Finslerian mechanical system Xg. So, if
the external forces Fe are global defined on the manifold 7'M, we obtain:

Theorem 3.1. |[Miron, [17, 18]| For the Finslerian mechanical systems Xg, the following
properties hold good:

1° The operator S defined by

.0 o . 1 . 0 o . . .
S = ?f@ - (2 G'— EFZ) 8y"; 2G" = ’Y;k(%y)yjyk (3.1)

s a vector field, global defined on the phase space T M.

2° S is a semispray which depends only on Xg and it is a spray if Fe is 2-homogeneous with
respect to y'.

3° The integral curves of the vector field S are the evolution curves given by the Lagrange
equations (2.7) of Xp.
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Proof.

1° Let us consider the canonical semispray § of the Finsler space F". Thus from (2.3.1) we
have

o 1
It follows that S is a vector field on T'M.
2° Since Fe is a vertical vector field, then S is a semispray. Evidently, S depends on ¥, only.
3° The integral curves of S are given by:

de* .  dy’
dt dt

o 1
=4 +2G (2,y) = S F'(z,y). (3.3)
The previous system of differential equations is equivalent to system (2.7).

In the book of I. Bucataru and R. Miron [5], one proves the following important result,
which extend a known J. Klein theorem, [9]:

Theorem 3.2. The semispray S, given by the formula (3.1), is the unique vector field on f./\?,
solution of the equation:

is w= —dT + o, (3.4)

o 1 1 datda?

where w is the symplectic structure of the Finsler space F™ = (M, F), T = §F2 = égijd—q;d—i
and o is the 1-form of external forces:

o = Fy(z,y)dx". (3.5)

In the terminology of J. Klein, [9], S is the dynamical system of ¥, defined on the tangent
manifold T'M. We will say that S is the evolution semispray of .

By means of semispray S we can develop the geometry of the Finslerian mechanical system
Y r. So, all geometrical notion derived from S, as nonlinear connections, N-linear connections
etc. will be considered as belong to the system X p. But, all this construction is developed in
the papers [17, 18|. A good application can be found in the Pavlov and Kokarev’s paper [23].
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O IIOJIYVOIIPEAEJIEHHBIX ®VHCJIEPOBbBIX
MEXAHNYECKNX CUCTEMAX

Paxy Mupon

Tpancunrvearncrut ynusepcumem, Bpawos, Pymvinus

[TonsgTne GUHEIEPOBBIX MEXaHUYECKUX CHCTEM OBLJIO BBEJIEHO ABTOPOM, KAK TPUILIET
Yr = (M,EF, Fe) bopmupyeMblii KOHMDUTYPAIMOHHBIM IPOCTPAHCTBOM M, KHHETHYeCKOii
sueprueit Ep moyonpeeseHHoro duHcaepoa npocrpancrsa F" = (M, F) u BHemHei
cunoit Fe. DynmaMeHntanbHble ypaBHEHUA X SBJAIOTC ypaBHeHUaMHU Jlarpamka.
MozkHO ompejiesinTh KAHOHUYECKUil nosycnpeit S u JoKa3arh, YTO MHTEIDAJbHbIE KPUBBIE
S SBJISIOTCS TUHAMUYECKUMU KPUBBIMU L. TakuM 00pasoM, reoMeTpUvecKas TEOpHUst
(UHCIEPOBBIX JTMHAMUYECKUX CHCTEM X MOXKET M3Yy4YaTbCd MPU MOMOIIU JTUHAMIYIECKUX
cucreM S B npocTpaHcTBe cKopocreir T M.

KiroueBble ciioBa:  mojiyonpejieieHHOe (DUHCIEPOBO MPOCTPAHCTBO, (DUHCIEPOBBI
MeXaHU9IeCKNe CUCTEMBI.



