ON THE FINSLERIAN MECHANICAL SYSTEMS

Radu Miron

University Transilvania of Brasov, Brasov, Romania

The notion of Finslerian Mechanical Systems was been introduced by author as a triple $\Sigma_F = (M, \mathcal{E}_F, Fe)$ formed by configuration space M, kinetic energy \mathcal{E}_F of a semidefinite Finsler space $F^n = (M, F)$ and the external forces Fe. Fundamental equations of Σ_F are the Lagrange equations. One determines the canonical semispray S and proves that the integral curves of S are the evolution curves of Σ_F . Thus, the geometrical theory of the Finslerian mechanical systems Σ_F can be studied by means of dynamical systems S on the velocity space TM.

Key Words: semidefinite Finsler space, Finslerian mechanical systems.

Introduction

My lecture to The VIIIth International Conference "Finsler Extensions of Relativity Theory", Moscow, July–August, 2012, is a survey on the Analytical Mechanics of Finslerian Mechanics, introduced by author in the papers [5, 12, 16, 17, 21]. These systems are defined by a triple $\Sigma_F = (M, F^2, Fe)$ where M is the configuration space, F(x, y) is the fundamental function of a semidefinite Finsler space $F^n = (M, F(x, y))$ and Fe(x, y) are the external forces. Of course, F^2 is the kinetic energy of the space. The fundamental equations are the Lagrange equations:

$$E_i(F^2) \equiv \frac{d}{dt} \frac{\partial F^2}{\partial \dot{x}^i} - \frac{\partial F^2}{\partial x^i} = F_i(x, \dot{x}).$$

We study here the canonical semispray S of Σ_F and the geometry of the pair (TM, S), where TM is velocity space, [17].

One obtain a generalization of the theory of Riemannian Mechanical Systems in the nonconservative case. It has numerous applications and justifies the introduction of such new kind of Analytical Mechanics.

1 Semidefinite Finsler spaces

Definition 1.1 A Finsler space with semidefinite Finsler metric is a pair $F^n = (M, F(x, y))$ where the function $F: TM \to \mathbb{R}$ satisfies the following axioms:

1° F is differentiable on \widetilde{TM} and continuous on the null section of $\pi: TM \to M$;

$$2^{\circ} F \geq 0$$
 on TM ;

- 3° F is positive 1-homogeneous with respect to velocities $\dot{x}^i = y^i$.
- 4° The fundamental tensor $g_{ij}(x, y)$

$$g_{ij} = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j} \tag{1.1}$$

has a constant signature on \widetilde{TM} ;

5° The Hessian of fundamental function F^2 with elements $g_{ij}(x, y)$ is nonsingular:

$$\det(g_{ij}(x,y)) \neq 0 \text{ on } TM. \tag{1.2}$$

Example. If $g_{ij}(x)$ is a semidefinite Riemannian metric on M, then

$$F = \sqrt{|g_{ij}(x)y^i y^j|} \tag{1.3}$$

is a function with the property $F^n = (M, F)$ is a semidefinite Finsler space.

Any Finsler space $F^n = (M, F(x, y))$, in the sense of definition 1.1, is a definite Finsler space. In this case the property 5° is automatical verified.

But, these two kind of Finsler spaces have a lot of common properties. Therefore, we will speak in general on Finsler spaces. The following properties hold:

- 1° The fundamental tensor $g_{ij}(x,y)$ is 0-homogeneous;
- $\begin{array}{l} 2^\circ \ F^2 = g_{ij}(x,y)y^iy^j;\\ 3^\circ \ p_i = \frac{1}{2}\frac{\partial F^2}{\partial y^i} \ \mbox{is d-covariant vector field;} \end{array}$
- 4° The Cartan tensor

$$C_{ijk} = \frac{1}{4} \frac{\partial^3 F^2}{\partial y^i \partial y^j \partial y^k} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}$$
(1.4)

is totally symmetric and

$$y^i C_{ijk} = C_{0jk} = 0. (1.5)$$

- $5^{\circ} \omega = p_i dx^i$ is 1-form on \widetilde{TM} (the Cartan 1-form);
- $6^{\circ} \theta = d\omega = dp_i \wedge dx^i$ is 2-form (the Cartan 2-form);
- 7° The Euler-Lagrange equations of F^n are

$$E_i(F^2) = \frac{d}{dt}\frac{\partial F^2}{\partial y^i} - \frac{\partial F^2}{\partial x^i} = 0, \quad y^i = \frac{dx^i}{dt}$$
(1.6)

8° The energy \mathcal{E}_F of F^n is

$$\mathcal{E}_F = y^i \frac{\partial F^2}{\partial y^i} - F^2 = F^2 \tag{1.7}$$

9° The energy \mathcal{E}_F is conserved along to every integral curve of Euler-Lagrange equations (1.6);

- 10° In the canonical parametrization, the equations (1.6) give the geodesics of F^n ;
- 11° The Euler-Lagrange equations (1.6) can be written in the equivalent form

$$\frac{d^2x^i}{dt^2} + \gamma^i_{jk}\left(x, \frac{dx}{dt}\right)\frac{dx^j}{dt}\frac{dx^k}{dt} = 0,$$
(1.8)

where $\gamma_{jk}^{i}\left(x,\frac{dx}{dt}\right)$ are the Christoffel symbols of the fundamental tensor $g_{ij}(x,y)$.

 12° $\,$ The canonical semispray S is

$$S = y^{i} \frac{\partial}{\partial x^{i}} - 2G^{i}(x, y) \frac{\partial}{\partial y^{i}}$$
(1.9)

with the coefficients:

$$2G^{i}(x,y) = \gamma^{i}_{jk}(x,y)y^{j}y^{k} = \gamma^{i}_{00}(x,y), \qquad (1.9')$$

(the index "0" means the contraction with y^i).

13° The canonical semispray S is 2-homogeneous with respect to y^i . So, S is a spray.

14° The nonlinear connection N determined by S is also canonical and it is exactly the famous Cartan nonlinear connection of the space F^n . Its coefficients are

$$N^{i}{}_{j}(x,y) = \frac{\partial G^{i}(x,y)}{\partial y^{j}} = \frac{1}{2} \frac{\partial}{\partial y^{j}} \gamma^{i}_{00}(x,y).$$
(1.10)

An equivalent form for the coefficients N_j^i is as follows

$$N^{i}{}_{j} = \gamma^{i}_{j0}(x,y) - C^{i}_{jk}(x,y)\gamma^{k}_{00}(x,y).$$
(1.10')

Consequently, we have

$$N^i{}_0 = \gamma^i_{00} = 2G^i. \tag{1.11}$$

Therefore, we can say: The semispray S' determined by the Cartan nonlinear connection N is the canonical spray S of space F^n .

15° The Cartan nonlinear connection N determines a splitting of vector space $T_u TM$, $\forall u \in TM$ of the form:

$$T_u T M = N_u \oplus V_u, \quad \forall u \in T M \tag{1.12}$$

Thus, the adapted basis $\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\right)$, (i = 1, ..., n), to the previous splitting has the local vector fields $\frac{\delta}{\delta x^i}$ given by:

$$\frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N^{j}{}_{i}(x, y) \frac{\partial}{\partial y^{j}}, \quad i = 1, .., n,$$
(1.13)

with the coefficients $N^{i}{}_{j}(x, y)$ from (1.6). Its dual basis is $(dx^{i}, \delta y^{i})$, where

$$\delta y^i = dy^i + N^i{}_j(x, y)dx^j. \tag{1.14}$$

The autoparallel curves of the nonlinear connection N are given by, [5, 18],

$$\frac{d^2x^i}{dt^2} + N^i{}_j\left(x,\frac{dx}{dt}\right)\frac{dx^j}{dt} = 0.$$
(1.15)

Using the dynamic derivative ∇ defined by N, the equations (1.11) can be written as follows

$$\nabla\left(\frac{dx^i}{dt}\right) = 0. \tag{1.11'}$$

 16° The variational equations of the autoparallel curves (1.11) give the Jacobi equations:

$$\nabla^2 \xi^i + \left(\frac{\partial N^i{}_j}{\partial y^k} \frac{dx^j}{dt} - N^i{}_k\right) \nabla \xi^k + R^i{}_{jk} \frac{dx^j}{dt} \frac{dx^k}{dt} = 0.$$
(1.16)

The vector field $\xi^i(t)$ along a solution c(t) of the equations (1.11) and which verifies the previous equations is called a Jacobi field. In the Riemannian case, $\frac{\partial g_{ij}}{\partial y^k} = 0$, the Jacobi equations (1.12) are exactly the classical Jacobi equations:

$$\nabla^2 \xi^i + R^i_{jlk}(x) \frac{dx^l}{dt} \frac{dx^j}{dt} \xi^k = 0$$
(1.17)

17° A distinguished metric connections D with the coefficients $C\Gamma(N) = (F_{jk}^i, C_{jk}^i)$ is defined as a N-linear connection on TM, metric with respect to the fundamental tensor $g_{ij}(x, y)$ of Finsler space F^n , i.e. we have

$$g_{ij|k} = \frac{\partial g_{ij}}{\partial x^k} - F^s_{ik} g_{sj} - F^s_{jk} g_{is} = 0,$$

$$g_{ij}|_k = \frac{\partial g_{ij}}{\partial y^k} - C^s_{ik} g_{sj} - C^s_{jk} g_{is} = 0.$$
(1.18)

 18° The following theorem holds:

Theorem 1.1

- 1° There is an unique N-linear connection D, with coefficients $C\Gamma(N)$ which satisfies the following system of axioms: A_1 . N is the Cartan nonlinear connection of Finsler space F^n .
 - A_2 . D is metrical, (i.e. D satisfies (2.1.14)).

$$A_3. T^i_{jk} = F^i_{jk} - F^i_{kj} = 0, \ S^i_{jk} = C^i_{jk} - C^i_{kj} = 0.$$

2° The metric N-linear connection D has the coefficients $C\Gamma(N) = (F_{jk}^i, C_{jk}^i)$ given by the generalized Christoffel symbols

$$F_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{sj}}{\delta x^{k}} + \frac{\delta g_{sk}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{s}} \right),$$

$$C_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\partial g_{sj}}{\partial y^{k}} + \frac{\partial g_{sk}}{\partial y^{j}} - \frac{\partial g_{jk}}{\partial y^{s}} \right).$$
(1.19)

 20° By means of this theorem, it is not difficult to see that we have

$$C^i_{jk} = g^{is} C_{sjk} \tag{1.20}$$

and

$$y^i{}_{|k} = 0. (1.21)$$

The Cartan nonlinear connection N determines on TM an almost complex structure \mathbb{F} , as follows:

$$\mathbb{F}\left(\frac{\delta}{\delta x^{i}}\right) = -\frac{\partial}{\partial y^{i}}, \quad \mathbb{F}\left(\frac{\partial}{\partial y^{i}}\right) = \frac{\delta}{\delta x^{i}}, \quad i = 1, .., n.$$
(1.22)

But one can see that \mathbb{F} is the tensor field on TM:

$$\mathbb{F} = -\frac{\partial}{\partial y^i} \otimes dx^i + \frac{\delta}{\delta x^i} \otimes \delta y^i, \qquad (1.22')$$

with the 1-forms δy^i and the vector field $\frac{\delta}{\delta x^i}$ given by (1.10), (1.9), (1.6).

It is not difficult to prove that: The almost complex structure \mathbb{F} is integrable if and only if the distribution N is integrable on TM.

22° The Sasaki-Matsumoto lift of the fundamental tensor g_{ij} of Finsler space F^n is

$$\mathbb{G}(x,y) = g_{ij}(x,y)dx^i \otimes dx^j + g_{ij}(x,y)\delta y^i \otimes \delta y^j.$$
(1.23)

The tensor field \mathbb{G} determines a pseudo-Riemannian structure on TM.

 23° The following theorem is known:

Theorem 1.2.

- 1° The pair (\mathbb{G}, \mathbb{F}) is an almost Hermitian structure on \widetilde{TM} determined only by the Finsler space F^n .
- 2° The symplectic structure associate to the structure (\mathbb{G},\mathbb{F}) is the Cartan 2-form:

$$\theta = 2g_{ij}\delta y^i \wedge dx^j. \tag{1}$$

3° The space $(\widetilde{TM}, \mathbb{G}, \mathbb{F})$ is almost Kählerian.

The space $H^{2n} = (\widetilde{TM}, \mathbb{G}, \mathbb{F})$ is called the almost Kählerian model of the Finsler space F^n .

G.S. Asanov in the paper [5] proved that the metric \mathbb{G} from (1.23) does not satisfies the principle of the Post-Newtonian Calculus. This is due to the fact that the horizontal and vertical terms of \mathbb{G} do not have the same physical dimensions.

This is the reason for R. Miron to introduce a new lift of the fundamental tensor g_{ij} , [5, 17, 18], in the form:

$$\widetilde{\mathbb{G}}(x,y) = g_{ij}(x,y)dx^i \otimes dx^j + \frac{a^2}{||y||^2}g_{ij}(x,y)\delta y^i \otimes \delta y^j$$

where a > 0 is a real constant imposed by applications in Theoretical Physics and where $\|y\|^2 = g_{ij}(x, y)y^iy^j = F^2$ has the property $F^2 > 0$. The lift \mathbb{G} is 2-homogeneous with respect to y^i . The Sasaki-Matsumoto lift \mathbb{G} has not the property of homogeneity, [8, 21].

Two examples:

- 1. Randers spaces. They have been defined by R. S. Ingarden as a triple $RF^n = (M, \alpha + \beta, N)$, where $\alpha + \beta$ is a Randers metric and N is the Cartan nonlinear connection of the Finsler space $F^n = (M, \alpha + \beta)$, [13].
- 2. Ingarden spaces. These spaces have been defined by R. Miron, [5, 18], as a triple $IF^n = (M, \alpha + \beta, N_L)$, where $\alpha + \beta$ is a Randers metric and N_L is the Lorentz nonlinear connection of $F^n = (M, \alpha + \beta)$ having the coefficients

$$N_{j}^{i}(x,y) = \mathring{\gamma}_{jk}^{i}(x)y^{k} - \mathring{F}_{j}^{i}(x), \qquad \mathring{F}_{j}^{i} = \frac{1}{2}a^{is}(x)\left(\frac{\partial b_{s}}{\partial x^{j}} - \frac{\partial b_{j}}{\partial x^{s}}\right).$$
(2)

The Christoffel symbols are constructed with the Riemannian metric tensor $a_{ij}(x)$ of the Riemann space (M, α^2) and $\mathring{F}_j^i(x)$ is the electromagnetic tensor determined by the electromagnetic form $(\alpha + \beta)$.

2 The notion of Finslerian mechanical system

As we know [5, 18], the Riemannian mechanical systems $\Sigma_{\mathcal{R}} = (M, T, Fe)$ is defined as a triple in which M is the configuration space, T is the kinetic energy and Fe are the external forces, which depend on the material point $x \in M$ and depend on velocities $y^i = \frac{dx^i}{dt}$.

Extending the previous ideas, we introduce the notion of Finslerian Mechanical System, studied by author in the paper [17]. The shortly theory of this analytical mechanics can be find in the joint book *Finsler-Lagrange Geometry*. Applications to Dynamical Systems, by Ioan Bucataru and Radu Miron, Romanian Academy Press, Bucharest, 2007.

In a different manner, M. de Leon and colab. [11], M. Crampin et colab. [17, 18], have studied such kind of new Mechanics. The time dependent case is considered in the book [4].

A Finslerian mechanical system Σ_F is defined as a triple

$$\Sigma_F = (M, \mathcal{E}_{F^2}, Fe) \tag{2.1}$$

where M is a real differentiable manifold of dimension n, called the configuration space, \mathcal{E}_{F^2} is the energy of an a priori given Finsler space $F^n = (M, F(x, y))$, which can be positive defined or semidefined, and Fe(x, y) are the external forces given as a vertical vector field on the tangent manifold TM. We continue to say that TM is the velocity space of M.

Evidently, the Finslerian mechanical system Σ_F is a straightforward generalization of the known notion of Riemannian mechanical system Σ_R obtained for \mathcal{E}_{F^2} as kinetic energy of a Riemann space $\mathcal{R}^n = (M, g)$.

Therefore, we can introduce the evolution (or fundamental) equations of Σ_F by means of the following Postulate:

Postulate. The evolution equations of the Finslerian mechanical system Σ_F are the Lagrange equations:

$$\frac{d}{dt}\frac{\partial \mathcal{E}_{F^2}}{\partial y^i} - \frac{\partial \mathcal{E}_{F^2}}{\partial x^i} = F_i(x, y), \qquad y^i = \frac{dx^i}{dt}$$
(2.2)

where the energy is

$$\mathcal{E}_{F^2} = y^i \frac{\partial F^2}{\partial y^i} - F^2 = F^2, \qquad (2.3)$$

and $F_i(x, y)$, (i = 1, ..., n), are the covariant components of the external forces Fe:

$$\begin{cases} Fe(x,y) = F^{i}(x,y)\frac{\partial}{\partial y^{i}}\\ F_{i}(x,y) = g_{ij}(x,y)F^{i}(x,y), \end{cases}$$
(2.4)

and

$$g_{ij}(x,y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}, \quad \det(g_{ij}(x,y)) \neq 0,$$
(2.5)

is the fundamental (or metric) tensor of Finsler space $F^n = (M, F(x, y))$.

Finally, the Lagrange equations of the Finslerian mechanical system are:

$$\frac{d}{dt}\frac{\partial F^2}{\partial y^i} - \frac{\partial F^2}{\partial x^i} = F_i(x, y), \quad y^i = \frac{dx^i}{dt}.$$
(2.6)

A more convenient form of the previous equations is given by:

Theorem 2.1. The Lagrange equations (2.6) are equivalent to the second order differential equations:

$$\frac{d^2x^i}{dt^2} + \gamma^i_{jk}\left(x, \frac{dx}{dt}\right)\frac{dx^j}{dt}\frac{dx^k}{dt} = \frac{1}{2}F^i\left(x, \frac{dx}{dt}\right),\tag{2.7}$$

Proof. Writing the kinetic energy $F^2(x, y)$ in the form:

$$F^{2}(x,y) = g_{ij}(x,y)y^{i}y^{j}, \qquad (2.8)$$

the equivalence of the systems of equations (2.6) and (2.7) is not difficult to establish.

But, the form (2.7) is very convenient in applications. So, we obtain a first result expressed in the following theorems:

Theorem 2.2. The trajectories of the Finslerian mechanical system Σ_F , without external forces ($Fe \equiv 0$), are the geodesics of the Finsler space F^n .

Indeed, $F^i(x, y) \equiv 0$ and the SODE (2.7) imply the equations (2.4) of geodesics of space F^n . A second important result is a consequence of the Lagrange equations, too.

Theorem 2.3. The variation of kinetic energy $\mathcal{E}_{F^2} = F^2$ of the mechanical system Σ_F along the evolution curves (2.6) is given by

$$\frac{d\mathcal{E}_{F^2}}{dt} = \frac{dx^i}{dt}F_i.$$
(2.9)

Theorem 2.4. The kinetic energy \mathcal{E}_{F^2} of the system Σ_F is conserved along the evolution curves (2.6) if the external forces Fe are orthogonal to the evolution curves.

The external forces Fe are called *dissipative* if the scalar product $\langle \mathbb{C}, Fe \rangle$ is negative, [17, 18].

Theorem 2.5. The kinetic energy \mathcal{E}_{F^2} decreases along the evolution curves of the Finslerian mechanical system Σ_F if and only if the external forces Fe are dissipative.

Some examples of Finslerian mechanical systems

- 1° The systems $\Sigma_F = (M, \mathcal{E}_{F^2}, Fe)$ given by $F^n = (M, \alpha + \beta)$ as a Randers space and $Fe = \beta \mathcal{C} = \beta y^i \frac{\partial}{\partial u^i}$. Evidently Fe is 2-homogeneous with respect to y^i .
- 2° Σ_F determined by $F^n = (M, \alpha + \beta)$ and $Fe = \alpha \mathbb{C}$.
- 3° Σ_F with $F^n = (M, \alpha + \beta)$ and $Fe = (\alpha + \beta)\mathbb{C}$.
- 4° Σ_F defined by a Finsler space $F^n = (M, F)$ and $Fe = a^i_{jk}(x)y^jy^k\frac{\partial}{\partial y^i}$, $a^i_{jk}(x)$ being a symmetric tensor on the configuration space M of type (1, 2).

3 The evolution semispray of the system Σ_F

The Lagrange equations (2.6) give us the integral curves of a remarkable semispray on the velocity space TM, which governed the geometry of Finslerian mechanical system Σ_F . So, if the external forces Fe are global defined on the manifold TM, we obtain:

Theorem 3.1. [Miron, [17, 18]] For the Finslerian mechanical systems Σ_F , the following properties hold good:

 1° The operator S defined by

$$S = y^{i} \frac{\partial}{\partial x^{i}} - \left(2 \overset{\circ}{G}^{i} - \frac{1}{2} F^{i}\right) \frac{\partial}{\partial y^{i}}; \qquad 2 \overset{\circ}{G}^{i} = \gamma^{i}_{jk}(x, y) y^{j} y^{k}$$
(3.1)

is a vector field, global defined on the phase space TM.

- 2° S is a semispray which depends only on Σ_F and it is a spray if Fe is 2-homogeneous with respect to y^i .
- 3° The integral curves of the vector field S are the evolution curves given by the Lagrange equations (2.7) of Σ_F .

Proof.

1° Let us consider the canonical semispray $\overset{\circ}{S}$ of the Finsler space F^n . Thus from (2.3.1) we have

$$S = \overset{\circ}{S} + \frac{1}{2}Fe. \tag{3.2}$$

It follows that S is a vector field on TM.

- 2° Since Fe is a vertical vector field, then S is a semispray. Evidently, S depends on Σ_F , only.
- 3° The integral curves of S are given by:

$$\frac{dx^{i}}{dt} = y^{i}; \qquad \frac{dy^{i}}{dt} + 2 \stackrel{\circ}{G^{i}}(x, y) = \frac{1}{2}F^{i}(x, y). \tag{3.3}$$

The previous system of differential equations is equivalent to system (2.7).

In the book of I. Bucataru and R. Miron [5], one proves the following important result, which extend a known J. Klein theorem, [9]:

Theorem 3.2. The semispray S, given by the formula (3.1), is the unique vector field on TM, solution of the equation:

$$i_S \stackrel{\circ}{\omega} = -dT + \sigma, \tag{3.4}$$

where $\overset{\circ}{\omega}$ is the symplectic structure of the Finsler space $F^n = (M, F), T = \frac{1}{2}F^2 = \frac{1}{2}g_{ij}\frac{dx^i}{dt}\frac{dx^j}{dt}$ and σ is the 1-form of external forces:

$$\sigma = F_i(x, y)dx^i. \tag{3.5}$$

In the terminology of J. Klein, [9], S is the dynamical system of Σ_F , defined on the tangent manifold TM. We will say that S is the evolution semispray of Σ_F .

By means of semispray S we can develop the geometry of the Finslerian mechanical system Σ_F . So, all geometrical notion derived from S, as nonlinear connections, N-linear connections etc. will be considered as belong to the system Σ_F . But, all this construction is developed in the papers [17, 18]. A good application can be found in the Pavlov and Kokarev's paper [23].

References

- [1] Abraham R., Marsden J. Foundations of Mechanics, Benjamin, New-York, 1978.
- [2] Anastasiei M. Symplectic structures and Lagrange geometry. In M. Anastasiei, P.L. Antonelli (eds.), Finsler and Lagrange Geometry, Kluwer Academic Publisher, 2003, pp. 1–6.
- [3] Antonelli P.L. (Ed.) Handbook of Finsler Geometry. Kluwer Acad. Publ., 2003.
- [4] Balan V., Neagu M. Jet Single-Time Lagrange Geometry and its Applications, Wiley, 2011.
- [5] Bucataru I., Miron R. Finsler-Lagrange Geometry. Applications to Dynamical Systems. Romanian Academy Publ. House, 2007.
- [6] Djukic D., Vujanovic B. On Some Geometrical Aspects of Classical Nonconservative Mechanics // Journal of Mathematical Physics, vol. 16, no. 10, pp. 2099-2102, 1975.
- [7] Hrimiuc D., Shimada H. On the *L*-duality between Lagrange and Hamilton manifolds // Nonlinear World, 3, 1996, pp. 613-641.
- [8] Ikeda S. Advanced Study in Applied Geometry, Seizansha, Kanagawa, 1995.
- [9] Klein J. Espaces Variationnels et Mécanique. // Ann. Inst. Fourier, Grenoble, 12, pp. 1– 124, 1962.

- [10] Krupková O. Variational Analysis on Fibered Manifolds over One-dimensional Bases, PhD Thesis, Silesian University, Opava & Charles University, Prague, 1992, 67 pp.
- [11] de Leon M., Rodrigues P.R. Almost tangent geometry and higher order mechanical systems, Proceedings of the Conference on Differential Geometry and Its Applications, August, 24-30, 1986, Brno, Reidel and J. E. Purkyne, Brno, 1987, pp. 179–195.
- [12] Miron R. Lagrange Geometry // Math. Comput. Modelling, 20 (4/5), 1994.
- [13] Miron R. General Randers Spaces, Lagrange and Finsler Geometry, in P.L. Antonelli and R. Miron, Editors, FTPH no. 59, Kluwer Acad. Publ., Otsu, 1996.
- [14] Miron R. Hamilton geometry, Univ. Timisoara Sem. Mecanica. 3, 1987.
- [15] Miron R. Metrical Finsler structures and metrical Finsler connections // J. Math. Kyoto Univ. 23, 1983, pp. 219-224.
- [16] Miron R. A Lagrangian theory of relativity, I, II, An. Şt. Univ. "Al. I. Cuza" Iaşi, 32, pp. 37–62, 1986, pp. 7–16.
- [17] Miron R. Dynamical Systems of Lagrangian and Hamiltonian Mechanical Systems // Advance Studies in Pure Mathematics, 48, 2007, pp. 309–340.
- [18] Miron R. Lagrangian and Hamiltonian geometries. Applications to Analytical Mechanics, Ed. Academiei & Ed. Fair Partners, Bucuresti, 2011.
- [19] Miron R. Compendium on the Geometry of Lagrange Spaces, in Dillen F.J.T. and Verstaelen L.C.A. (Eds.) // Handbook of Differential Geometry, vol. II, 2006, pp. 437–512.
- [20] Miron R., Anastasiei M., Bucataru I. The Geometry of Lagrange Spaces, in Antonelli, P.L. (Ed.) // Handbook of Finsler Geometry, vol. 2, Kluwer Acad. Publ., 2003, pp. 967–1122.
- [21] Miron R., Hrimiuc D., Shimada H., Sabău S.V. The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publ., FTPH nr. 118, 2001.
- [22] Munteanu, Gh., Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publisher, 2004.
- [23] Pavlov D.G., Kokarev, S.S. Conformal gauges of the Berwald-Moor Geometries and their induced non-linear symmetries, (in Russian) // Hypercomplex Number in Geometry and Physics, 2(10), vol. 1, 2004, pp. 5–18.
- [24] Santilli R. M. Foundations of theoretical mechanics. I. The inverse problem in Newtonian mechanics, Texts and Monographs in Physics. Springer-Verlag New York, New York-Heidelberg, 1978, xix+266 pp.
- [25] Santilli R. M. Foundations of theoretical mechanics. II. Birkhoffian generalization of Hamiltonian mechanics, Texts and Monographs in Physics. Springer-Verlag, New York-Berlin, 1983, xix+370 pp.
- [26] Vujici V.A., Hedrih (Stevanovic) K. The Rheonomic constraints change force, Facta Universitatis, 1, 1991, pp. 313–322.

О ПОЛУОПРЕДЕЛЕННЫХ ФИНСЛЕРОВЫХ МЕХАНИЧЕСКИХ СИСТЕМАХ

Раду Мирон

Трансильванский университет, Брашов, Румыния

Понятие финслеровых механических систем было введено автором, как триплет $\Sigma_F = (M, \mathcal{E}_F, Fe)$ формируемый конфигурационным пространством M, кинетической энергией \mathcal{E}_F полуопределенного финслерова пространства $F^n = (M, F)$ и внешней силой Fe. Фундаментальные уравнения Σ_F являются уравнениями Лагранжа. Можно определить канонический полуспрей S и доказать, что интегральные кривые S являются динамическими кривыми Σ_F . Таким образом, геометрическая теория финслеровых динамических систем Σ_F может изучаться при помощи динамических систем S в пространстве скоростей TM.

Ключевые слова: полуопределенное финслерово пространство, финслеровы механические системы.