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ON THE FINSLERIAN MECHANICAL SYSTEMS

Radu Miron
University Transilvania of Brasov, Brasov, Romania

The notion of Finslerian Mechanical Systems was been introduced by author as a triple
ΣF = (M, EF , Fe) formed by configuration space M , kinetic energy EF of a semidefinite
Finsler space Fn = (M,F ) and the external forces Fe. Fundamental equations of ΣF are
the Lagrange equations. One determines the canonical semispray S and proves that the
integral curves of S are the evolution curves of ΣF . Thus, the geometrical theory of the
Finslerian mechanical systems ΣF can be studied by means of dynamical systems S on
the velocity space TM .
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Introduction

My lecture to The VIIIth International Conference “Finsler Extensions of Relativity Theory”,
Moscow, July–August, 2012, is a survey on the Analytical Mechanics of Finslerian Mechanics,
introduced by author in the papers [5, 12, 16, 17, 21]. These systems are defined by a triple
ΣF = (M,F

2, Fe) where M is the configuration space, F (x, y) is the fundamental function of
a semidefinite Finsler space F n = (M,F (x, y)) and Fe(x, y) are the external forces. Of course,
F 2 is the kinetic energy of the space. The fundamental equations are the Lagrange equations:

Ei(F
2) ≡

d

dt

∂F 2

∂ẋi
−
∂F 2

∂xi
= Fi(x, ẋ).

We study here the canonical semispray S of ΣF and the geometry of the pair (TM,S), where
TM is velocity space, [17].
One obtain a generalization of the theory of Riemannian Mechanical Systems in the non-

conservative case. It has numerous applications and justifies the introduction of such new kind
of Analytical Mechanics.

1 Semidefinite Finsler spaces

Definition 1.1 A Finsler space with semidefinite Finsler metric is a pair F n = (M,F (x, y))
where the function F : TM → R satisfies the following axioms:

1◦ F is differentiable on T̃M and continuous on the null section of π : TM →M ;

2◦ F ≥ 0 on TM ;

3◦ F is positive 1-homogeneous with respect to velocities ẋi = yi.

4◦ The fundamental tensor gij(x, y)

gij =
1

2

∂2F 2

∂yi∂yj
(1.1)

has a constant signature on T̃M ;

5◦ The Hessian of fundamental function F 2 with elements gij(x, y) is nonsingular:

det(gij(x, y)) 6= 0 on T̃M. (1.2)
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Example. If gij(x) is a semidefinite Riemannian metric on M , then

F =
√
|gij(x)yiyj| (1.3)

is a function with the property F n = (M,F ) is a semidefinite Finsler space.
Any Finsler space F n = (M,F (x, y)), in the sense of definition 1.1, is a definite Finsler

space. In this case the property 5◦ is automatical verified.
But, these two kind of Finsler spaces have a lot of common properties. Therefore, we will

speak in general on Finsler spaces. The following properties hold:

1◦ The fundamental tensor gij(x, y) is 0-homogeneous;

2◦ F 2 = gij(x, y)y
iyj;

3◦ pi =
1

2

∂F 2

∂yi
is d−covariant vector field;

4◦ The Cartan tensor

Cijk =
1

4

∂3F 2

∂yi∂yj∂yk
=
1

2

∂gij

∂yk
(1.4)

is totally symmetric and
yiCijk = C0jk = 0. (1.5)

5◦ ω = pidx
i is 1-form on T̃M (the Cartan 1-form);

6◦ θ = dω = dpi ∧ dxi is 2-form (the Cartan 2-form);

7◦ The Euler-Lagrange equations of F n are

Ei(F
2) =

d

dt

∂F 2

∂yi
−
∂F 2

∂xi
= 0, yi =

dxi

dt
(1.6)

8◦ The energy EF of F n is

EF = y
i∂F

2

∂yi
− F 2 = F 2 (1.7)

9◦ The energy EF is conserved along to every integral curve of Euler-Lagrange equations (1.6);

10◦ In the canonical parametrization, the equations (1.6) give the geodesics of F n;

11◦ The Euler-Lagrange equations (1.6) can be written in the equivalent form

d2xi

dt2
+ γijk

(

x,
dx

dt

)
dxj

dt

dxk

dt
= 0, (1.8)

where γijk

(

x,
dx

dt

)

are the Christoffel symbols of the fundamental tensor gij(x, y).

12◦ The canonical semispray S is

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
(1.9)

with the coefficients:
2Gi(x, y) = γijk(x, y)y

jyk = γi00(x, y), (1.9’)

(the index “0” means the contraction with yi).

13◦ The canonical semispray S is 2-homogeneous with respect to yi. So, S is a spray.
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14◦ The nonlinear connection N determined by S is also canonical and it is exactly the
famous Cartan nonlinear connection of the space F n. Its coefficients are

N ij(x, y) =
∂Gi(x, y)

∂yj
=
1

2

∂

∂yj
γi00(x, y). (1.10)

An equivalent form for the coefficients N ij is as follows

N ij = γ
i
j0(x, y)− C

i
jk(x, y)γ

k
00(x, y). (1.10’)

Consequently, we have
N i0 = γ

i
00 = 2G

i. (1.11)

Therefore, we can say: The semispray S ′ determined by the Cartan nonlinear connection
N is the canonical spray S of space F n.

15◦ The Cartan nonlinear connection N determines a splitting of vector space TuTM ,
∀ u ∈ TM of the form:

TuTM = Nu ⊕ Vu, ∀u ∈ TM (1.12)

Thus, the adapted basis

(
δ

δxi
,
∂

∂yi

)

, (i = 1, .., n), to the previous splitting has the local

vector fields
δ

δxi
given by:

δ

δxi
=
∂

∂xi
−N j i(x, y)

∂

∂yj
, i = 1, .., n, (1.13)

with the coefficients N ij(x, y) from (1.6).
Its dual basis is (dxi, δyi), where

δyi = dyi +N ij(x, y)dx
j. (1.14)

The autoparallel curves of the nonlinear connection N are given by, [5, 18],

d2xi

dt2
+N ij

(

x,
dx

dt

)
dxj

dt
= 0. (1.15)

Using the dynamic derivative ∇ defined by N , the equations (1.11) can be written as follows

∇

(
dxi

dt

)

= 0. (1.11’)

16◦ The variational equations of the autoparallel curves (1.11) give the Jacobi equations:

∇2ξi +

(
∂N ij

∂yk
dxj

dt
−N ik

)

∇ξk +Rijk
dxj

dt

dxk

dt
= 0. (1.16)

The vector field ξi(t) along a solution c(t) of the equations (1.11) and which verifies the

previous equations is called a Jacobi field. In the Riemannian case,
∂gij

∂yk
= 0, the Jacobi

equations (1.12) are exactly the classical Jacobi equations:

∇2ξi +Rijlk(x)
dxl

dt

dxj

dt
ξk = 0 (1.17)
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17◦ A distinguished metric connections D with the coefficients CΓ(N) =
(
F ijk, C

i
jk

)
is defined

as a N -linear connection on TM , metric with respect to the fundamental tensor gij(x, y) of
Finsler space F n, i.e. we have

gij|k =
δgij

δxk
− F sikgsj − F

s
jkgis = 0,

gij|k =
∂gij

∂yk
− Csikgsj − C

s
jkgis = 0.

(1.18)

18◦ The following theorem holds:

Theorem 1.1

1◦ There is an unique N-linear connection D, with coefficients CΓ(N) which satisfies the
following system of axioms: A1. N is the Cartan nonlinear connection of Finsler space
F n.

A2. D is metrical, (i.e. D satisfies (2.1.14)).

A3. T
i
jk = F

i
jk − F

i
kj = 0, S

i
jk = C

i
jk − C

i
kj = 0.

2◦ The metric N-linear connection D has the coefficients CΓ(N) =
(
F ijk, C

i
jk

)
given by the

generalized Christoffel symbols

F ijk =
1

2
gis
(
δgsj

δxk
+
δgsk

δxj
−
δgjk

δxs

)

,

C ijk =
1

2
gis
(
∂gsj

∂yk
+
∂gsk

∂yj
−
∂gjk

∂ys

)

.

(1.19)

20◦ By means of this theorem, it is not difficult to see that we have

Cijk = g
isCsjk (1.20)

and
yi|k = 0. (1.21)

The Cartan nonlinear connection N determines on T̃M an almost complex structure F, as
follows:

F

(
δ

δxi

)

= −
∂

∂yi
, F

(
∂

∂yi

)

=
δ

δxi
, i = 1, .., n. (1.22)

But one can see that F is the tensor field on T̃M :

F = −
∂

∂yi
⊗ dxi +

δ

δxi
⊗ δyi, (1.22’)

with the 1-forms δyi and the vector field
δ

δxi
given by (1.10), (1.9), (1.6).

It is not difficult to prove that: The almost complex structure F is integrable if and only if
the distribution N is integrable on TM .

22◦ The Sasaki-Matsumoto lift of the fundamental tensor gij of Finsler space F n is

G(x, y) = gij(x, y)dx
i ⊗ dxj + gij(x, y)δy

i ⊗ δyj . (1.23)

The tensor field G determines a pseudo-Riemannian structure on TM .
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23◦ The following theorem is known:

Theorem 1.2.

1◦ The pair (G,F) is an almost Hermitian structure on T̃M determined only by the Finsler
space F n.

2◦ The symplectic structure associate to the structure (G,F) is the Cartan 2-form:

θ = 2gijδy
i ∧ dxj. (1)

3◦ The space (T̃M,G,F) is almost Kählerian.

The space H2n = (T̃M,G,F) is called the almost Kählerian model of the Finsler space F n.
G.S. Asanov in the paper [5] proved that the metric G from (1.23) does not satisfies the

principle of the Post-Newtonian Calculus. This is due to the fact that the horizontal and
vertical terms of G do not have the same physical dimensions.
This is the reason for R. Miron to introduce a new lift of the fundamental tensor gij ,

[5, 17, 18], in the form:

G̃(x, y) = gij(x, y)dx
i ⊗ dxj +

a2

||y||2
gij(x, y)δy

i ⊗ δyj

where a > 0 is a real constant imposed by applications in Theoretical Physics and where
‖y‖2 = gij(x, y)yiyj = F 2 has the property F 2 > 0. The lift G is 2-homogeneous with respect
to yi. The Sasaki-Matsumoto lift G has not the property of homogeneity, [8, 21].

Two examples:

1. Randers spaces. They have been defined by R. S. Ingarden as a triple RF n = (M,α+β,N),
where α + β is a Randers metric and N is the Cartan nonlinear connection of the Finsler
space F n = (M,α + β), [13].

2. Ingarden spaces. These spaces have been defined by R. Miron, [5, 18], as a triple IF n =
(M,α+β,NL), where α+β is a Randers metric and NL is the Lorentz nonlinear connection
of F n = (M,α + β) having the coefficients

N ij(x, y) =
◦
γ i
jk(x)y

k−
◦
F
i
j(x),

◦
F
i
j =
1

2
ais(x)

(
∂bs

∂xj
−
∂bj

∂xs

)

. (2)

The Christoffel symbols are constructed with the Riemannian metric tensor aij(x) of the Rie-

mann space (M,α2) and
◦
F ij(x) is the electromagnetic tensor determined by the electromagnetic

form (α + β).

2 The notion of Finslerian mechanical system
As we know [5, 18], the Riemannian mechanical systems ΣR = (M,T, Fe) is defined as a triple
in which M is the configuration space, T is the kinetic energy and Fe are the external forces,

which depend on the material point x ∈M and depend on velocities yi =
dxi

dt
.

Extending the previous ideas, we introduce the notion of Finslerian Mechanical System,
studied by author in the paper [17]. The shortly theory of this analytical mechanics can be
find in the joint book Finsler-Lagrange Geometry. Applications to Dynamical Systems, by Ioan
Bucataru and Radu Miron, Romanian Academy Press, Bucharest, 2007.
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In a different manner, M. de Leon and colab. [11], M. Crampin et colab. [17, 18], have
studied such kind of new Mechanics. The time dependent case is considered in the book [4].
A Finslerian mechanical system ΣF is defined as a triple

ΣF = (M, EF 2 , Fe) (2.1)

where M is a real differentiable manifold of dimension n, called the configuration space, EF 2 is
the energy of an a priori given Finsler space F n = (M,F (x, y)), which can be positive defined or
semidefined, and Fe(x, y) are the external forces given as a vertical vector field on the tangent
manifold TM . We continue to say that TM is the velocity space of M .
Evidently, the Finslerian mechanical system ΣF is a straightforward generalization of the

known notion of Riemannian mechanical system ΣR obtained for EF 2 as kinetic energy of a
Riemann space Rn = (M, g).
Therefore, we can introduce the evolution (or fundamental) equations of ΣF by means of

the following Postulate:

Postulate. The evolution equations of the Finslerian mechanical system ΣF are the Lagrange
equations:

d

dt

∂EF 2
∂yi

−
∂EF 2
∂xi

= Fi(x, y), yi =
dxi

dt
(2.2)

where the energy is

EF 2 = y
i∂F

2

∂yi
− F 2 = F 2, (2.3)

and Fi(x, y), (i = 1, .., n), are the covariant components of the external forces Fe:





Fe(x, y) = F i(x, y)
∂

∂yi

Fi(x, y) = gij(x, y)F
i(x, y),

(2.4)

and

gij(x, y) =
1

2

∂2F 2

∂yi∂yj
, det(gij(x, y)) 6= 0, (2.5)

is the fundamental (or metric) tensor of Finsler space F n = (M,F (x, y)).
Finally, the Lagrange equations of the Finslerian mechanical system are:

d

dt

∂F 2

∂yi
−
∂F 2

∂xi
= Fi(x, y), yi =

dxi

dt
. (2.6)

A more convenient form of the previous equations is given by:

Theorem 2.1. The Lagrange equations (2.6) are equivalent to the second order differential
equations:

d2xi

dt2
+ γijk

(

x,
dx

dt

)
dxj

dt

dxk

dt
=
1

2
F i
(

x,
dx

dt

)

, (2.7)

Proof. Writing the kinetic energy F 2(x, y) in the form:

F 2(x, y) = gij(x, y)y
iyj, (2.8)

the equivalence of the systems of equations (2.6) and (2.7) is not difficult to establish.
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But, the form (2.7) is very convenient in applications. So, we obtain a first result expressed
in the following theorems:

Theorem 2.2. The trajectories of the Finslerian mechanical system ΣF , without external
forces (Fe ≡ 0), are the geodesics of the Finsler space F n.

Indeed, F i(x, y) ≡ 0 and the SODE (2.7) imply the equations (2.4) of geodesics of space F n.
A second important result is a consequence of the Lagrange equations, too.

Theorem 2.3. The variation of kinetic energy EF 2 = F 2 of the mechanical system ΣF along
the evolution curves (2.6) is given by

dEF 2
dt
=
dxi

dt
Fi. (2.9)

Theorem 2.4. The kinetic energy EF 2 of the system ΣF is conserved along the evolution curves
(2.6) if the external forces Fe are orthogonal to the evolution curves.

The external forces Fe are called dissipative if the scalar product 〈C, Fe〉 is negative, [17, 18].

Theorem 2.5. The kinetic energy EF 2 decreases along the evolution curves of the Finslerian
mechanical system ΣF if and only if the external forces Fe are dissipative.

Some examples of Finslerian mechanical systems
1◦ The systems ΣF = (M, EF 2 , Fe) given by F n = (M,α + β) as a Randers space and Fe =

βC = βyi
∂

∂yi
. Evidently Fe is 2-homogeneous with respect to yi.

2◦ ΣF determined by F n = (M,α + β) and Fe = αC.

3◦ ΣF with F n = (M,α + β) and Fe = (α + β)C.

4◦ ΣF defined by a Finsler space F n = (M,F ) and Fe = aijk(x)y
jyk
∂

∂yi
, aijk(x) being a sym-

metric tensor on the configuration space M of type (1, 2).

3 The evolution semispray of the system ΣF
The Lagrange equations (2.6) give us the integral curves of a remarkable semispray on the
velocity space TM , which governed the geometry of Finslerian mechanical system ΣF . So, if
the external forces Fe are global defined on the manifold TM , we obtain:

Theorem 3.1. [Miron, [17, 18]] For the Finslerian mechanical systems ΣF , the following
properties hold good:

1◦ The operator S defined by

S = yi
∂

∂xi
−

(

2
◦
G
i −
1

2
F i
)
∂

∂yi
; 2

◦
G
i = γijk(x, y)y

jyk (3.1)

is a vector field, global defined on the phase space TM .

2◦ S is a semispray which depends only on ΣF and it is a spray if Fe is 2-homogeneous with
respect to yi.

3◦ The integral curves of the vector field S are the evolution curves given by the Lagrange
equations (2.7) of ΣF .
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Proof.

1◦ Let us consider the canonical semispray
◦
S of the Finsler space F n. Thus from (2.3.1) we

have

S =
◦
S +
1

2
Fe. (3.2)

It follows that S is a vector field on TM .

2◦ Since Fe is a vertical vector field, then S is a semispray. Evidently, S depends on ΣF , only.

3◦ The integral curves of S are given by:

dxi

dt
= yi;

dyi

dt
+ 2

◦

Gi (x, y) =
1

2
F i(x, y). (3.3)

The previous system of differential equations is equivalent to system (2.7).
In the book of I. Bucataru and R. Miron [5], one proves the following important result,

which extend a known J. Klein theorem, [9]:

Theorem 3.2. The semispray S, given by the formula (3.1), is the unique vector field on T̃M ,
solution of the equation:

iS
◦
ω= −dT + σ, (3.4)

where
◦
ω is the symplectic structure of the Finsler space F n = (M,F ), T =

1

2
F 2 =

1

2
gij
dxi

dt

dxj

dt
and σ is the 1-form of external forces:

σ = Fi(x, y)dx
i. (3.5)

In the terminology of J. Klein, [9], S is the dynamical system of ΣF , defined on the tangent
manifold TM . We will say that S is the evolution semispray of ΣF .
By means of semispray S we can develop the geometry of the Finslerian mechanical system

ΣF . So, all geometrical notion derived from S, as nonlinear connections, N-linear connections
etc. will be considered as belong to the system ΣF . But, all this construction is developed in
the papers [17, 18]. A good application can be found in the Pavlov and Kokarev’s paper [23].
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О ПОЛУОПРЕДЕЛЕННЫХ ФИНСЛЕРОВЫХ
МЕХАНИЧЕСКИХ СИСТЕМАХ

Раду Мирон
Трансильванский университет, Брашов, Румыния

Понятие финслеровых механических систем было введено автором, как триплет
ΣF = (M, EF , Fe) формируемый конфигурационным пространством M , кинетической
энергией EF полуопределенного финслерова пространства Fn=(M,F ) и внешней
силой Fe. Фундаментальные уравнения ΣF являются уравнениями Лагранжа.
Можно определить канонический полуспрей S и доказать, что интегральные кривые
S являются динамическими кривыми ΣF . Таким образом, геометрическая теория
финслеровых динамических систем ΣF может изучаться при помощи динамических
систем S в пространстве скоростей TM .

Ключевые слова: полуопределенное финслерово пространство, финслеровы
механические системы.


