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The nilpotent version of the Dirac equation can be constructed on the basis of the algebra
of a double vector space or complexified double quaternions. This algebra is isomorphic
to the standard gamma matrix algebra, with 64 units which can be produced by just 5
generators. The H4 algebra used in the Berwald-Moor metric is a distinct subalgebra of
this 64-part algebra. The creation of the 5 generators requires the rotation symmetry
of one of the two component vector spaces to be preserved while the other is broken.
It is convenient to identify the respective spaces as an observable real space and an
unobservable ‘vacuum’ space, with corresponding physical properties. In combination
the 5 generators produce a nilpotent structure which can be identified as a fermionic
wavefunction or solution of the Dirac equation. The spinors required to generate the 4
components of the wavefunction can be derived from first principles and have exactly the
same form as the four components of the Berwald-Moor metric. They also incorporate the
units of the H4 algebra in an identical way. The spinors produce a zero product which can
be interpreted in terms of a fermionic singularity arising from the distortion introduced
into the vacuum (or spinor) space by the application of a nilpotent condition.
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1 A dual vector space
We need to begin by describing a number of significant algebras. The four quaternion units,
i , j , k , 1, follow the well-known multiplication rules:

i 2 = kj 2 = k 2 = i j k = −1 (1)

i i = −j i = k (2)

j k = −kj = i (3)

ki = −ik = j . (4)

The multivariate vector units, i, j, k, 1, are effectively complexified quaternions (ii) = i,
(ij ) = j, (ik) = k, (i1) = i, and follow the multiplication rules:

i2 = j2 = k2 = 1 (5)

ij = −ji = ik (6)

jk = −kk = ii (7)

ki = −ik = ij. (8)

They are isomorphic to Pauli matrices. If we complexify this algebra, we revert to quaternions,
so (ii) = i , (ij) = j , (ik) = k , etc. Multivariate vectors differ from ordinary vectors in having
a full (algebraic) product:

ab = a ∙ b+ ia× b (9)

from which all the rules concerning unit vector multiplication may be derived. Terms like ii,
ij, ik are pseudovectors (e.g. area, angular momentum) and i is a pseudoscalar (e.g. volume).
The units i, j, k define a complete Clifford algebra of 3D space:
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i j k vector
ii ij ik bivector pseudovector quaternion
i trivector pseudoscalar
1 scalar

Pseudovectors and pseudoscalars give us areas and volumes, etc. The intrinsic complexification
produces a kind of doubling of the elements. Let us suppose we have another such algebra,
isomorphic with the first:

I J K vector
iI iJ iK bivector pseudovector quaternion
i trivector pseudoscalar
1 scalar

If we combine these two algebras commutatively in a tensor product, or alternatively take the
algebraic product of the eight base units, 1, i, j, k, i, I, J, K, we obtain 64 terms, which are
«+» and «−» versions of:

i j k ii ij ik i 1
I J K iI iJ iK
iI jI kI iiI ijI ikI
iJ jJ kJ iiJ ijJ ikJ
iK jK kK iiK ijK ikK

We can describe this as a double vector algebra or a double Clifford algebra of 3D space.
Alternatively, we can take the algebraic product of the four quaternion units, 1, i , j , k , and
the four vector units i, i, j, k, to obtain «+» and «−» versions of:

i j k ii ij ik i 1
i j k ii ij ik
ii ji ki iii iji iki
ij jj kj iij ijj ikj
ik jk kk iik ijk ikk

This is exactly isomorphic to the previous algebra and can be described as a vector quaternion
algebra. A third version of the same algebra could be obtained by complexifiying the algebraic
product of two commutative sets of quaternion units i , j , k , I , J , K . This algebra has «+»
and «−» versions of:

i j k ii ij ik i 1
I J K iI iJ iK
iI j I kI iiI ij I ikI
iJ j J kJ iiJ ij J ikJ
iK jK kK iiK ijK ikK

This can be described as a complexified double quaternion algebra.

2 The gamma matrices and the H4 algebra
The three 64-part algebras are completely isomorphic. The units can be represented as a group
of order 64, with a minimum of 5 generators. Their physical significance is that they are also
isomorphic to the gamma algebra of the Dirac equation, based on 4 × 4 matrices. In fact all
possible gamma matrices can be derived from the products of two commuting sets of Pauli
matrices, say σ1, σ2, σ3 and Σ1, Σ2, Σ3. Relativistic quantum mechanics, it seems, requires
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a dual vector space. This is in addition to the ‘doubling’ produced by the complex nature of
each vector space [1, 2].
The 5 generators of the group can be matched to the 5 gamma matrices in a number of

ways, for example:

γ0 = ik ; γ1 = i i; γ2 = i j; γ3 = ik; γ5 = ij .

There are many ways of doing this but the overall structure is always the same.
A particular subalgebra of the 64-part algebra is the H4 algebra. This can be obtained using
coupled quaternions, with units 1, iI , jJ , kK . The result is a cyclic but commutative algebra
with multiplication rules

iI iI = jJ jJ = kKkK = 1 (10)

iI jJ = jJ iI = kK (11)

jJkK = kKjJ = iI (12)

kKiI = iI kK = jJ (13)

The same algebra can be achieved with the negative values of the paired vector units 1, −iI,
−jJ, −kK. (1 is equivalent here to −ii.) This time we have:

(−iI)(−iI) = (−jJ)(−jJ) = (−kK)(−kK) = 1 (14)

(−iI)(−jJ) = (−jJ)(−iI) = (−kK) (15)

(−jJ)(−kK) = (−kK)(−jJ) = (−iI) (16)

(−kK)(−iI) = (−iI)(−kK) = (−jJ) (17)

If we use the symbols I = iI = −iI, J = jJ = −jJ, K = kK = −kK, 1, to represent this
algebra, we can structure the relationships in a group table:

∗ 1 I J K

1 1 I J K
I I 1 K J
J J K 1 I
K K I J 1

The group is a Klein-4 group, a noncyclic group of order 4.

3 Nilpotent quantum mechanics
One of the most significant aspects of the algebraic versions of the gamma algebra is that
they allow us to create a very powerful and streamlined version of relativistic quantum me-
chanics [1, 2]. The simplest way to derive this is to begin with Einsteins energy-momentum
conservation equation (with the usual convention that c = 1):

E2 − p2 −m2 = 0 (18)

We can now use our algebra to factorize this equation, Here we will use the combination of
four quaternion units (1, i , j , k) and four multivariate vector units (i, i, j, k) though we could
equally use the double vector or complex double quaternion algebras. The eight base units
(1, i , j , k , i, j, k, i) have a similar structure to Penrose’s twistors, [3] with four real or norm
−1 components and four imaginary or norm 1 components. There is a significant difference,
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however, in that the connection between the units of space and time is a quantum rather
than a classically relativistic one. Even in conventional relativistic quantum mechanics, the
connection between space and time is not that of a true 4-vector, but rather one mediated by
the gamma matrices, with different gammas applied to the space and time components. The
algebra now allows us to factorize (18) in the form

(ikE + i ipx + i jpy + ikpz + jm)(ikE+ i ipx + i jpy + ikpz + jm) = 0 (19)

or
(ikE + ip+ jm)(ikE+ ip+ jm) = 0. (20)

If we now apply a canonical quantization procedure to the first bracket in these squared expres-
sions, to replace the terms i and p by the operators E→ i∂/∂t, p→ −i∇ (this time equating
~ to 1), and assume that the operators act on the phase factor for a free fermion, e−i(Et−p.r),
we obtain the nilpotent Dirac equation for a free fermion:

(

∓k
∂

∂t
∓ ii∇+ jm

)

(±ikE ± ip+ jm)e−i(Et−p.r) = 0 (21)

If we use a multivariate vector for the p or ∇ term it automatically includes spin (through the
extra × term in the full product) [4]. So, here, p is interchangeable with σ.p and ∇ with σ.∇.
However, if we should revert to using ordinary vectors at any time, we would have to include
an explicit spin or angular momentum term.
As usual, 4 simultaneous solutions are required for the wavefunction: 2 for fermion / an-

tifermion × 2 for spin up / spin down. Rather than a 4 × 4 matrix differential operator and a
column vector wavefunction, we use a row vector operator and a column vector wavefunction,
each of which may be represented in abbreviated form by (±ikE ± ip+ jm). In the nilpotent
formalism, the four solutions can be represented as, say:

(ikE+ ip+ jm) fermion spin up
(ikE− ip+ jm) fermion spin down
(−ikE+ ip+ jm) antifermion spin down
(−ikE− ip+ jm) antifermion spin up

The observed particle state is the first in the column, while the others are the accompanying
vacuum states, or states into which the observed particle could transform by respective P, T
and C transformations:

P i(ikE+ ip+ jm)i = (ikE− ip+ jm)
T k(ikE+ ip+ jm)k = (− ikE+ ip+ jm)
C −j (ikE+ ip+ jm)j = (− ikE− ip+ jm)

Replacing the observed fermion state spin up with any of the others would simultaneously
transform all four states by P, T or C. It is often convenient to specify just the first term, with
the others assumed to be automatic consequences. The relation between the P, T, C transfor-
mations and vacuum can be shown in a relatively simple way. If we take (±ikE±ip+jm) and
post-multiply it by the idempotent k(±ikE ± ip + jm) any number of times, the only effect
is to introduce a scalar multiple, which can be normalized away.

(±ikE± ip+ jm)k(±ikE± ip+ jm)k(±ikE± ip+ jm) ... → (±ikE± ip+ jm) (22)

Similarly with (jE±ip+jm or (iE±ip+jm. All these idempotent quantities can be regarded
as vacuum operators, and k , i and j , or, equivalently, K, I and J, as coefficients of a ‘vacuum
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space’. Nilpotent quantum mechanics (NQM) produces all the standard results of conventional
relativistic quantum mechanics, which can easily be obtained by replacing (21) with

−iγ5

(

γ0
∂

∂t
+ γ1

∂

∂x
+ γ2

∂

∂y
+ γ3

∂

∂z
+ im

)

= 0 (23)

Standard classic results obtainable through NQM include spin , one-handed helicity for weakly
interacting states, and the zitterbewegung which emerges as an automatic switching process
between the four states in the wavefunction, and which is interpreted as a mass-generating
switching between the fermion and its antifermion vacuum partner, and the two helicity states,
which are already mixed in real fermions. NQM also produces many new results. [1] Among the
most important are the descriptions of three different boson-type states, which are combinations
of the fermion state which any of the P, T or C transformed ones, the result being a scalar
wavefunction.

(±ikE ± ip+ jm)(∓ikE± ip+ jm) spin 1 boson
(±ikE ± ip+ jm)(∓ikE∓ ip+ jm) spin 0 boson
(±ikE ± ip+ jm)(±ikE∓ ip+ jm) fermion-fermion combination

One of the most significant aspects of this formalization is that a spin 1 boson can be massless,
but a spin 0 boson cannot, as then (±ikE ± ip)(∓ikE ∓ ip) would immediately zero: hence
Goldstone bosons must become Higgs bosons in the Higgs mechanism.
The key aspect of NQM, is the fact that an operator of the form (ikE + ip + jm) auto-

matically generates a phase term on which it operates to produce a nilpotent amplitude of the
form (ikE+ ip+ jm), that is, one that squares to zero. We don’t really need an equation. The
fermion needn’t be free. We can incorporate field terms or covariant derivatives into the oper-
ator, with, for example, E→ i∂/∂t+ eφ+ ..., and p→ −i∇+ eA + ... . We can still represent
the operator as (ikE + ip + jm), but the phase term will no longer be e−i(Et−p.r). It will be
whatever is needed to create an amplitude of the general form (ikE + ip+ jm), which squares
to zero, with the eigenvalues E and p representing the more complicated expressions that will
result from the presence of the field terms. In principle, this means that we can do relativistic
quantum mechanics for a fermion in any state, subject to any number of interactions, simply
by defining an operator of the form (±ikE ± ip+ jm). This will then uniquely determine the
phase factor which makes the amplitude nilpotent. There is no need to define any equation at
all:

operator acting on phase factor2 = amplitude2 = 0. (24)

In NQM the total structure of the universe is exactly zero. Pauli exclusion, a fundamentally
nonlocal phenomenon, is an immediate consequence. Imagine creating a fermion wavefunction
of the form ψf = (ikE+ ip+ jm) from absolutely nothing; then we must simultaneously create
the dual term, ‘vacuum’, ψf = −(ikE + ip+ jm), which negates it both in superposition and
combination:

ψf + ψv = (ikE+ ip+ jm)− (ikE+ ip+ jm) = 0 (25)

ψfψv = −(ikE+ ip+ jm)(ikE+ ip+ jm) = 0 (26)

Pauli exclusion then says that no two fermions share the same vacuum.
As an example of the power of NQM, we may show a calculation involving the Coulomb inter-
action. The U(1) symmetry group for the Coulomb interaction comes from the characterization
of a fermion as a point source with spherical symmetry. It is a purely scalar symmetry defined
only by the magnitude of the charge, or source of the interaction. This is effectively equiva-
lent to defining a coupling constant for the interaction, which maintains its value independent
of the distance from the source. Here, we use a version of Dirac’s standard prescription for
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converting the differential operator to polar coordinates, [5] with the explicit inclusion of a
fermionic spin / angular momentum term:

(

±ikE ± i

(
∂

∂r
+
1

r
± i

(
j + 1

2

r

))

+ jm

)

. (27)

The fundamental condition necessary to assign this operator to a fermion state is that it main-
tains Pauli exclusion and leads to a nilpotent solution when applied to a phase factor. This
leads to the local manifestation of the U(1) symmetry. It can be seen, simply by inspection,
that it will be impossible to obtain a nilpotent solution (i.e. a nilpotent amplitude) and Pauli
exclusion with any phase factor unless the operator ikE includes a potential energy term vary-
ing with 1 / r to cancel out the effect of that in the i part of the operator. So, simply requiring
spherical symmetry for a point particle, requires a term of the form A / r to be added to E.

(

±ik

(

E+
A

r

)

± i

(
∂

∂r
+
1

r
± i

(
j + 1

2

r

))

+ jm

)

. (28)

Deriving the solution for this case provides a model for all other cases. If all point particles are
spherically symmetric sources, then the minimum nilpotent operator will be of the form (28).
To establish that this is a nilpotent, we must now find the phase to which this must apply
to create a nilpotent amplitude. This is a convenient example for showing how an operator
fixes the phase factor and quite quickly produces the characteristic solution for the Coulomb
force (hydrogen atom, etc.). The solution for (28) is relatively straightforward. The ease of
calculation is due to the fact that the structure provides dual information about both fermion
and vacuum. We apply the specified operator to the phase factor

e−arrγ
∑

ν=0

aνr
ν (29)

to find the amplitude (derived, as in the conventional solution, by inspired guesswork or trial
and error), and equate the squared amplitude to zero.

4

(

E +
A

r

)2
= −2




−a+

γ

r
+
ν

r
+ ...+ i





j +
1

2
r









−

−2




−a+

γ

r
+
ν

r
+ ...− i





j +
1

2
r









+ 4m2

(30)

Equating constant terms, we find:
a =
√
m2 − E2 (31)

Equating terms in 1/r2, with ν = 0:

γ = −1 +

√(

j +
1

2

)2
− A2 (32)

Assuming the power series terminates at n′, and equating coefficients of 1/r for ν = n′:

2EA = −2
√
m2 − E2(γ + 1 + n′) (33)
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and
E

m
=

1
√

1 +
A2

(γ + 1 + n′)2

=
1

√√
√
√
√
1 +

A2

(

√

(j +
1

2
)2 − A2 + n′)2

. (34)

When A = Ze2 we have the ‘hydrogen atom’ solution in just 6 lines!

4 The fermion as a singularity
One way of looking at fermion structure is to say that it requires two ‘spaces’ to define a particle
singularity. We can describe one of these as real space and the other as the ‘vacuum space’
which we have previously defined. This space is closely connected with charge and the weak,
strong and electric interactions, as well as with T, P and C transformations. The generators
of the combined 64-part algebra, significantly, require the symmetry of one space to be broken
while the other is preserved:

K iIi iIj iIk iJ
energy momentum mass
time space proper time

The space with the unbroken symmetry (lower case symbols) is real space, the space of observa-
tion. The space with the broken symmetry (upper case symbols) is ‘vacuum space’, the space of
all unobservable quantities (time, mass, charge, etc). The creation of a singularity using these
two spaces determines that they are precisely dual and that each contains the same informa-
tion as the other, though in a different form as regards observation. The fermionic singularity
produces an asymmetry or chirality in the space of observation because of its combination in
the asymmetric nilpotent structure with the unobserved dual vacuum space.
The combination of fermion singularity and spatial duality has many manifestations: spin

and nonzero rest mass occur because the fermion ‘rotation’ has to negotiate 2 spaces but with
an observed asymmetry; zitterbewegung comes from the switching determined by the duality
between the spaces; spin chirality of fermions emerges through exactly the same process as the
chirality producing mass via zitterbewegung, because the spinor process produces an observed
asymmetry between the spaces that are dual in their original formulation. And it becomes
apparent that the zitterbewegung mass is exactly that produced by the chirality of vacuum
space in the Higgs mechanism. Berry phase is an expression of the singularity of the fermion
state and is equivalent to spin (topology with a singularity produces an extra twist, equivalent
to ). The pole in the fermion propagator occurs at the boundary between observed space (+E)
and vacuum space (−E), the combination which produces the singularity.
A possible analogy between the two spaces is, if we create a knot out of two pieces of

string, say red and blue, but imagine that each doesn’t know that the other exists (which is
effectively the meaning of commutativity). We then imagine seeing the universe from the point
of view of one of them, say, the blue string. From the blue perspective (‘blue space’ / lower
case symbols), the blue string is straight, so we must devise some special contortion to create
the state of the red string from the blue’s perspective. The spatial ‘double twist’ becomes
equivalent to a singularity, an additional structure within the space. (The paired quaternion /
vector units, I = iI = −iI, J = jJ = −jJ, K = kK = −kK, in fact, define a minimal degree
of mathematical knottedness in that each operated on by one of the others produces the third,
with no anticommutativity.)
Penrose has examined something similar from the point of view of twistor theory, which has

a family resemblance to the algebra of the dual space in that it is constructed of four real units
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and four imaginary. Visually, the effect can be represented in the Robinson congruence. [3, 6]
Penrose’s theory, however, assumes a classical 4-dimensional relation between space and time
or momentum and energy, while NQM requires a quantum connection to be made via ‘vacuum
space’ (k , i , j ), or through the ‘gamma matrices’:

ik i i i j ik j
K iIi iIj iIk iJ
energy momentum mass
time space proper time

In effect, Penrose has to eliminate the mass and take the scalar product of the space-time to
preserve the 4-vector structure which he has privileged.
The twistors derive their dual 4-D vector space from the intrinsic duality of a 3-D vector

space, in requiring vectors and pseudovectors. However, NQM really requires an additional
duality – a dual dual space, which does not require an arbitrary extension to 4-D. The apparent
‘4-dimensionality’ comes from a combination of 2 × 3-D. Mass emerges from this extra duality
even if we assume that the intrinsic motion of the particles is at the speed of light. Defining a
physical singularity in terms of two vector spaces produces mass, as well as spin and chirality.

5 Defining a dual space spinor
In standard relativistic quantum mechanics, the wavefunction, say ψ, is multiplied by a 4-
spinor, a summation of 4 terms which adds to 1. ψ is a solution of the Dirac equation, and so
is ψ multiplied by any of the 4 terms in the spinor. Individual terms in the spinor are used
as projection operators to project out individual states fermion / antifermion, spin up / down.
The nilpotent formalism doesn’t need spinors because the terms are already projected, but it is
possible to set it up in such a way as spinors can be used. The most convenient way is to use
both pre- and post-multiplication of ψ, as with the C, P, T operators. This dual multiplication
emerges from the fact that the nilpotent wavefunction is already pre-multiplied by an algebraic
operator, by comparison with the conventional one.
All the standard aspects of spin and helicity are easily recovered with NQM. This means

that it is possible to find a spinor structure which will generate the NQM state vector. A
set of primitive idempotents constructing a spinor can be defined in terms of the H4 algebra,
constructed from the dual vector spaces:

(1−iI−jJ−kK)/4
(1−iI+jJ+kK)/4
(1+iI−jJ+kK)/4
(1+iI+jJ−kK)/4

As required the 4 terms add up to 1, and are orthogonal as well as idempotent, all products
between them being 0. The same terms can be generated using coupled quaternions rather
than vectors:

(1+iI+jJ+iI )/4
(1+iI−jJ−iI )/4
(1−iI+jJ−iI )/4
(1−iI−jJ+iI )/4

Complexified vector quaternions produce the same structures as the dual vectors:

(1−ii i−ij j−ikk)/4
(1−ii i+ij j+ikk)/4
(1+ii i−ij j+ikk)/4
(1+ii i+ij j−ikk)/4



74 Hypercomplex Numbers in Geometry and Physics, 2 (16), Vol 8, 2011

These spinor structures were produced following discussions with J.B. Almeida, who has been
working on an extensive theory of spinor structure.
The ‘spaces’ in the spinor structure are notably completely dual. The system, however,

introduces chirality, for the signs cannot be completely reversed. We can only reverse two of
them, e.g.

(1+iI−jJ+kK)/4
(1+iI+jJ−kK)/4
(1−iI−jJ−kK)/4
(1−iI+jJ+kK)/4

Pre- and post-multiplying a ‘pre-spinor’ form of the nilpotent by either the original set of double
vector spinors, or the set with signs reversed, typically gives results such as






1 0 0 0
0 −ikk 0 0
0 0 −ii i 0
0 0 0 −ij j













ikE+ ip+ jm
ikE+ ip+ jm
ikE+ ip+ jm
ikE+ ip+ jm













1 0 0 0
0 ikk 0 0
0 0 ii i 0
0 0 0 −ij j





 =

= ((ikE+ ip+ jm) (ikE− ip+ jm) (−ikE+ ip+ jm) (−ikE− ip+ jm))

(35)

which is the full ‘spinor’ form of the nilpotent wavefunction, with the chirality assigned to
the mass term. (An alternative approach would be to assume that the columns in the first
4 × 4 matrix bear the coefficients 1, k, i, j, and the rows 1, ik , ii , ij , the position being
reversed in the second 4 × 4 matrix; a version of this technique has been used previously to
relate the nilpotent version of the Dirac equation to the conventional one based on matrices.[1])
Clearly, any two nonidentical spinor matrices will produce a physically meaningful version of
the 4-component wavefunction.
One of the remarkable things about the spinor structures generated is that they have the

exact form of the components of the two forms of the Berwald-Moor metric:

(t− x− y − z)(t− x+ y + z)(t+ x− y + z)(t+ x− y + z) (36)

(t+ x+ y + z)(t+ x− y − z)(t− x+ y − z)(t− x− y + z) (37)

If we multiply the 4 components in any order, we will always get zero. In a sense this is
like defining a singularity in ‘spinor space’. The zero product can thus be interpreted as a
fermionic singularity arising from the distortion introduced into the vacuum (or spinor) space
by the application of a nilpotent condition. The space becomes quartic because it is created
out of two quadratic spaces. We can see this from the fact that the spinor structure ultimately
emerges from 4 × 4 matrices which are created from two sets of 2 × 2 matrices, which are
isomorphic to the units of the usual quadratic vector spaces.
As the two vector spaces are dual, it is possible to restructure physical equations so that their

positions are reversed, and so the singularity in spinor (= vacuum) space implies that there must
also be a singularity in the observed ‘real’ space. The quartic Berwald-Moor metric becomes an
expression of the fundamentally rotationally quartic nature of the underlying algebra. While
multiplication of the units of the algebra produces rotations in the spaces and identity after a
complete cycle, multiplication of the spin metric shows that it describes a singularity.
In fact, the H4 algebra has many manifestations at a fundamental level in physics. A long-

standing theory of my own is that the fundamental parameters mass(-energy), time, charge
(electric, strong and weak) and space have a Klein-4 symmetry relating their properties to each
other [1,7-9]. Klein-4, as we have shown, is essentially the group structure of H4. The same
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applies to identity and the T, C and P transformations, which are related to the respective
properties of mass, time, charge and space. Also, their fundamental algebraic natures are re-
spectively scalar, pseudoscalar, quaternion and vector, which, when expressed as the Clifford
algebra equivalents scalar, trivector, bivector and vector (where these are taken in 1-D), also
have a Klein-4 symmetry. If we take mass, time, charge and space as successive descriptions
of the universe generated by a ‘universal rewrite system’ (as work done over the last decade
suggests we should [1, 10-11]), then we have four commutative algebras existing as a simul-
taneous description. In effect, because the first two are scalar and complex, this reduces to
a combination of scalar, complex coefficient and quaternion acting as though it were a vector
space, and another vector space. The combination is not physical, and so is unobservable. This
is what we have called ‘vacuum space’. The breaking of the symmetry of this ‘space’ in creating
the 5 generators of the algebra is the ultimate source of the breaking of symmetry between the
physical interactions [1].

6 Using discrete differentiation

A discrete or anticommutative differentiation process, developed by Kauffman, [12] offers us a
possible link between quantum and classical conditions. In this mathematics, the differentials
are replaced by commutators. Defining

dF

dt
= [F ,H] = [F ,E] (38)

and
∂F
∂Xi
= [F ,Pi] (39)

we can remove the phase factor from the amplitude and the mass term from the operator (and
∂F
∂t

can replace
dF

dt
where there is no explicit use of a velocity operator). In our physical

application, we can define a nilpotent amplitude

ψ = ikE + i iP1 + i jP2 + ikP3 + jm) (40)

and an operator

D = ik
∂

∂t
− i i

∂

∂X1
− i j

∂

∂X2
− ik

∂

∂X3
(41)

with
∂ψ

∂t
= [ψ,H] = [ψ,E] (42)

and
∂ψ

∂Xi
= [ψ,Pi]. (43)

With some straightforward algebraic manipulation, we find that

D = iψ(ikE + i iP1 + i jP2 + ikP3 + jm) + i(ikE+ i iP1 + i jP2 + ikP3 + jm)ψ−

−2i(E− P21 − P
2
2 − P

2
3 −m

2).
(44)

When is ψ nilpotent, then

Dψ =

(

k
∂

∂t
+ ii∇

)

ψ = 0. (45)
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This is a Dirac equation using discrete differentials. Generalising this to four states, with D
and ψ represented as 4-spinors, then

Dψ =

(

k
∂

∂t
± ii∇

)

(±ikE± i iP1 ± i jP2 ± ikP3 + jm) = 0 (46)

becomes the equivalent to the Dirac equation in this calculus. Significantly we did not use i or
i~ in defining the differentials, though this is usually required in canonical quantization. The
equation is thus valid, where nilpotency is a fundamental condition, in discrete classical as well
as in quantum contexts.
In a further development, we can also extend the definition of D, following Kauffman, to

include covariant terms, such as Ai, so that D becomes D − Ai. The covariant terms Ai can
be seen as representing either a field source or an expression of the distortion of the Euclidean
space-time structure, for example, that produced by the presence of mass in general relativity.
This means that, if we choose to use structures of this kind to replace the direct use of mass,
then a massless covariant D operator provides us with a convenient route to achieving this.
In this context, we observe that Bogoslovsky [13] sees the field of a fermion-antifermion

condensate as a source of space-time anisotropy, with a phase transition in which the particles
acquire masses from the space-time, the mass shell taking the form of two hyperboloid in-
scribed cones. By introducing exponents into the expression for the metric function, Bogoslovsky
finds a geometric phase transition, which could be interpreted as a mass-creating spontaneous-
symmetry breaking in the fermion-antifermion consendate. According to Bogoslovsky, the
generalised Lorentz transformations responsible for the process lead directly to the Berwald-
Moor metric. In the discrete version of the double nilpotent representation of the bosonic state
(or ‘fermion-antifermion condensate’), no mass term appears in the operator, but the differen-
tials may be replaced by covariant derivatives, and so the opportunity arises to represent the
appearance of mass directly in terms of an anisotropic space-time structure. Of course, the dual
space structure we have used is directly responsible for the creation of mass, as this emerges
with spin , chirality and zitterbewegung from the creation of the fermionic singularity.

7 Conclusion

An analysis of the true nature of the gamma algebra and its origins suggests that the most
significant aspects of relativistic quantum mechanics and the fermionic state – singularity,
nilpotency, spin 1/2, chirality, zitterbewegung, the origin of mass, and symmetry breaking –
can be described through a spinor structure which is a manifestation of the ultimate spatial
distortion – a singularity. The singularity is created through a combination of two quadratic
spaces, made dual through a nilpotent connection. In fact, if we reverse the topological ar-
gument for explaining spin and Berry phase, this is probably the only true way of creating
a physical singularity in nature. The Berwald-Moor metric, by appearing in the spinor space
which defines this singularity, has a truly fundamental role to play in quantum physics.The
nilpotent condition, however, can be applied beyond quantum physics, and a version of the
nilpotent Dirac equation can be applied to systems that are classical but discrete, if we use a
calculus based on commutators rather than differentials. It is possible that the Berwald-Moor
metric may be significant also under these, as well as under quantum, conditions.
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МЕТРИКА БЕРВАЛЬДА-МООРА В НИЛЬПОТЕНТНОМ
СПИНОРНОМ ПРОСТРАНСТВЕ ДИРАКА.

Питер Роуландс
Университет Ливерпуля, Ливерпуль, Великобритания
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Нильпотентная версия уравнения Дирака может быть построена на основе
алгебры двойного векторного пространства или комплексифицированных двойных
кватернионов. Такая алгебра изоморфна стандартной алгебре гамма-матриц: 64
единицы, которые могут быть получены всего лишь пятью генераторами. Алгебра
Н4, используемая в метрике Бервальда-Моора — очевидная подалгебра этой 64-
элементной алгебры. Создание пяти генераторов требует сохранения вращательной
симметрии одного из двух компонентов векторных пространств, в то время как
симметрия второго — нарушена. Целесообразным будет определить указанные
пространства, как: одно — доступное наблюдению действительное пространство и
второе - «вакуумное», недоступное наблюдению пространство с соответствующими
физическими свойствами. В сочетании друг с другом эти 5 генераторов создают
нильпотентную структуру, которую можно определить, как фермионную волновую
функцию или решение уравнения Дирака. Спиноры, необходимые для генерации
4-х компонент волновой функции, могут быть получены из первых принципов и
иметь точно такую же форму, как и четыре компоненты метрики Бервальда-Моора.
Также, подобным образом, они включают в себя единицы алгребы H4. Спиноры дают
нулевое произведение, которое можно интерпретировать через призму фермионных
сингулярностей, возникающих в результате возмущения, вводимого в вакуумное (или
спинорное) пространство наложением условий нильпотентности.

Ключевые слова: Метрика Бервальда-Моора, нильпотент, спинор, векторное
пространство.


