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1 Introduction

The algebras widely using in the mathematical physics, such as classical Clifford algebras,
have their definitions from quadratic or bilinear relations. This is a consequence, rather, the
bilinear aspects of fundamental objects such as quadratic metrics, canonical pair of the phase
space variables, commutation relations etc. A real Clifford algebra is generated by the set of
basis vectors {e;,i = 1,...,n} and defining relations e;e; + eje; = 2g;; where g;; € R are the
coefficients of a non degenerate symmetric bilinear form. If the set is orthonormal the defining
relations reduce to

eie; = —eje;,  er =+l (1.1)

The classical Clifford algebra admits a Z5- graded structure. Wide investigations of the classical
Clifford algebras have been initiated by success of the Dirac equation. However, besides Clifford
algebras one may build an algebraic extension, the Generalized Clifford Algebras. New algebra
equipped with a metric defined by a homogeneous polynomial form of degree n naturally leads
to an underlying Z,-graded structures [1], [2]. These algebras, just as Clifford algebras, emerge
from various contexts. About the problem on usefulness of the hypercomplex numbers in physics
have been dedicated several papers (see, for instance, A. A. Eliovich [4] and references therein).
Properties of the hypercomplex algebra of fourth order have been successfully applied to explore
Berwald-Moor metric in Finslerian geometry [3]. Specially, the efforts in the developments of the
multicomplex algebras are motivated by the new ideas which occur in quantum mechanics based
on homogeneous metrics of degree higher than two [5]. However, besides the quantum mechanics
it is also great interest to construct the classical mechanics based on high degree metrics.
Generalization of Hamiltonian mechanics based on the extension of binary operation on classical
observable to the phase space with multiple operation of higher order (D > 3), has received
much attention in the recent literature since Nambu’s contribution [6]. Y. Nambu proposed
the generalization of Hamiltonian dynamics by introduce a triplet of dynamical variables which
spans a tree-dimensional phase space, instead of a canonical pair. As a result, the state of a
system is represented by a point in the three-dimensional phase space, and this point moves
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with time along a curve in the three-dimensional phase space. Since the publication of Nambu’s
paper, different aspects of this problem have been studied by several group of authors [7].

In the present paper we propose a dynamical principle from which it follows two kind of
Hamilton-Nambu equations in D > 2-dimensional phase space. The first one is formulated with
(D—1) Hamiltonian and single parameter of evolution, the Nambu equations. In Ref. [8], we have
proposed an extension of the Newtonian mechanics in D > 3 dimensional phase space within
the Nambu’s formalism. As a consequence, three-dimensional phase space oscillator model
within Jacobi elliptic functions for the extended Newtonian mechanics has been constructed.
The second kind of dynamics is formulated with (D — 1)-evolution parameter and a single
Hamiltonian. The Hamiltonian of the oscillator model of the latter is given by D-degree
homogeneous form. This dynamics in some sense is the inverse one to the Nambu dynamics.

In Sec.2 we recall the basic notions of the multicomplex algebra and the theory of the
polytrigonometric functions.

In Sec.3 we show that there exist two kind of the Hamiltonian equations, namely, direct
Hamiltonian equations can be coupled by their inverse formulation.

In Sec. 4 we show that the Nambu-Hamilton equations admit its inverse formulation.

In Sec.5 we derive the dynamical equations in D- dimensional phase space with (D — 1)-
evolution parameters and single Hamiltonian in terms of the co- and contra-variant coordinates
defined in the space with polylinear metric form. We construct the polylinear oscillator model.
The underlying algebraic structure of the polylinear oscillator model is the multicomplex
algebra.

2 Commutative Part of Generalized Clifford Algebras.
Polygonometric functions

The Generalized Clifford algebras (GCA) C’l;n) is generated by a set of p canonical
generators ey, ..., e, fulfilling:

ejej = wsg(j_i)ejei, el ==x1, i,5=1,...,p (2.1)

2

In this paper we shall use the commutative part of the GCA. A commutative part of the
classical Clifford algebra is generated by unique generator e, with €2 = 1. When the generator
e is given by e = —1 then one has well known algebra of Complex Numbers . Similarly, a
commutative part of GCA is the algebra of unique generator e, satisfying to the conditions

e" = +1. This is n-dimensional commutative algebra. A detail description of this algebra for

e™ = 1 a reader may find in [9]. In this paper we shall consider the algebra with the unique
generator defined by e” = —1, we shall denominate Algebra of Multicomplex Numbers (MC,,). It
is worth to underline that most of the results of the usual complex number analysis remain true
for M C),-number analysis. Let us sketch briefly the basic and useful properties of multicomplex
algebra and its elliptic mappings which are direct extension of the cosine&sine functions. More

detail description of this algebra reader may find in [10].

where w = exp (££) is a n-th primitive root of unity and sg(x) the usual sign function.

Any z € MC,, is defined by finite series expansion
z= Z e g, =1 (2.2)
i=1

Among the unitary equivalent matrix representations of the operator e we shall use one given
by anticirculant matrix
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100 ..0
010 ..0
E=1 . ... .. .| (2.3)
0 000 ..1
-1 000 ..0
This matrix satisfies the following condition
E"=—-1 (2.4)

and gives arise to convenient matrix representation of z € MC,,:
n
Zh, =Y a(ET).,. (2.5)
i=1

By using the matrix E a product of two MC),-numbers one may represent in the following

convenient way
n

{iei—lai}{zei—lbi} _ iei—lci’

1= 1= 1=

with

n n

= (B0 am =Y (B )b (2.6)
I=1 =1

The inverse MC,-number z~! we shall define via the notion of inverse matrix Z~!. In search

of Z~1 we find n-order of pseudo-norm of Z as the determinant:
|Z|" = det{Z! }. (2.7)
Definition: |z|" = |Z]|".
Thus |z|", as well |Z]", is an homogeneous form of n degree relatively ¢;:
2" =" g g, (2.8)
where the summation convention is adopted. Obviously,
21 2" = [21|" |22]" (2.9)
Any MC,,-number is coupled by its conjugation. The conjugation of z is given by the following

Definition:
z € MC, is conjugation of z € MC,, if zz=|z|".

Let us represent z by the series

zZ= i qie’(i’l).
i=1

The coordinates ¢;, ¢/ we call as covariant and contra-variant coordinates, correspondingly.
These are the components of the vector in n-dimensional space, while |z|" can be interpreted as
a square of the length of a such vector. These coordinates satisfy the following bilinear relations
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from which one may form n- dimensional orthogonal basis defining

n n

Wy =Y (E" g, hd =) (E-® ) ¢ (2.11)

k=1 k=1
These vectors are mutually orthogonal because
Wby = 3 S (BN, g B g = [l (212)
k=1 I=1

where we used (2.6) and (2.10).
By using (2.8) and (2.10) one finds explicit relationships between ¢* and g¢;:

g =0 g (2.13)

Any MC,-number defined by the condition |[z|" = 1 can be given in the exponential

representation:
n—1
2 = exp <Z gpiei). (2.14)
i=1

Then, an expansion straightforward gives arise to the analogue of Euler formula:
2= musi)e™, o={p1, - pn}. (2.15)
i=1

These "mus"-functions one may consider as extension of the usual set of cosine&sine functions.
For n = 2 one recovers the tri-gonometric functions:

musy (p) = cos(p), musy(p) = sin(p),

correspondingly, the condition |2z|" = det(Z!) = 1 is reduced to well known identity: cos?(y) +
sin?(¢) = 1. We suggest to denominate the set of functions mus;(p), i = 1,---,n as poly-
gonometric functions.

In the polar coordinates the M C),-number is defined by

n—1
Z = pexp (Z goz-ei), (2.16)
i=1

where p = |z|.
Further, it has sense to introduce the notion of the partially conjugated MC,,-numbers. By
using

‘ 2
Zw’ =0, w= exp(ﬂ),
=1
we write
20,0, =l — o (2.17)
where

n—1
Z(k) = pexp (Z wkieigoi) .
i=1

MC,-numbers z®) k = 1,2,...,n — 1 we shall call partially conjugated of z. Form (2.17) it

follows

7=,0,2 1)
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It is useful to keep in mind also:
|Z|" = |z(1)|"|z(2)|" . |z(”’1)|" = prn=1), (2.18)

because

zZ= H Z ' Vet 7= pnlexp(— Z piel). (2.19)

7z = pnnl), (2.20)

where \ = p"("=2),
To derive the derivatives of the poly-gonometric functions it is enough to use the series

expansions (2.14), (2.15). Setting equal the expressions at any e! in

a n—1 ‘ . n—1 '
8—<p- exp (Z goiez> = e’ exp (Z <piel>
J i=1 i=1

one gets

imusl(<p) = (E"" musp(v), k=1,....,n—1. (2.21,a)
Ipr

For the coordinates, correspondingly, we get

dg;
Doy,

g’ i
= (BY a, = —(E"d. (2.21,b)

For convenience of a reader let us repeat the above formulae for the case z € MCs.

Definition:

z=q +eq+ g, € =1

Conjugation:
2

:ql—o—efqu—O—e* q3.

N

Pseudo-norm:
121% = g + ¢¢* + 43¢°.

Partial conjugations:
2V = g1+ wegy + wegs, 2P = g1 + weqy + wegs.
Relationships between covariant and contra-variant coordinates:

¢ = ()’ + e ¢=—(0)*+ae, ¢ =)+ ea.
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Formulae of differentiation.

For the covariant vectors:

%(% ) Q3>:<—Q3 "0 Q2>7 %(‘h 72 Q3):<_QZ s QI)

For the contra-variant vectors:

5 ¢t —¢* 5 ¢t —¢
s 2= - |. 2 | — q"
a(pl 3 1 a(PZ 3 2

q q q q

In conclusion of this section, let us give one useful representation for the pseudo-norm of z.
To give a main idea, let us begin from the case n = 3. According to the definition:

g1 G2 Q3
|z|3:det(Z):det —q3 q1 Q2

—@2 —(Q3 Q1

Now let us recall the definition of the determinant of the matrix:

ap Gz ag
det(A) =det | b, by by :eijkaibjck,

€1 C2 C3
€% is the Levi-Civita tensor. By equating the matrix A with the matrix Z we find
:(EO)i ) b :(El)i ) :(EQ)i )
ay 1965 ! 1%, G 19:-

Therefore, g
|2* = det(2) = €5 (E*)2(EY)S(E*)F 4ptim.

In the general case we get

2| = el b (BO) (BY)2 - (BN gy - i (2.22)

l2

3 Direct and Inverse Hamiltonian Equations

Let us recall the basic elements of Hamiltonian dynamics. One has two dimensional phase
space on which the Poisson bracket structure obeying the Jacobi identity is defined. Further,
one has the Hamiltonian form for the equations of motion where the evolution in time of
a dynamical system is generated by a single function, the Hamiltonian. The basic canonical
structure of the phase space of Hamiltonian mechanics is carried by the canonical pairs of the
Cartesian coordinates.

Consider now isolated, macroscopic system consisting of IV identical particles, each of which
has three translational degrees of freedom. The dynamical state of the system at a given time
completely specified by the 3N coordinates and 3N momenta of the particles. The values of
these variables define a phase point in a 2n = 6 N- dimensional phase space. The classical phase
space for Hamiltonian mechanics consists of the pair of coordinates {z*,p;}, 7 = 1,...,n and

Poisson bracket:
Afi,f2) 0fidfs 0fi0f

Vel =50 = duton, o e

(3.1)
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where f is a classical observable, smooth function on the phase space and the summation
convention adopted.

A standard textbook presentation of the classical mechanics start from the first principles
of the classical mechanics, such as, the principle of least action, according to which the world
trajectories under the Hamilton phase flow are extremals of the action. Another principle is

invariance of the Poincaré integral

over canonical mapping (z(t), pi(t)) — (2'(t + 6t), p;(t + 6t)) [11].
One may generalize the latter to the case of Poincaré-Cartan integral

P02://d:ci/\dpi—//dh/\dt.

Instead of this we shall use the principle of the form-invariance of the integral equality

//dxi/\dpi:u//dh/\dt (3.3)

(2", p:) — (h,t), (h,t) — (2", p;). (3.4)

Here, h is the Hamiltonian or, equal is the total energy of the system. (We suppose that an
interactions explicitly no dependent of time.) The constant of motion p can be expressed of P,

and PCy:

over the mappings

Py
P, — PCy
As far as our further results do not depend of u, we shall take u = 1.

Let us start from the case of one dimensional motion D = 2. In that case we have two
integrals of motion in the capacity of which one may choose: (1) the initial time ¢y, (2) the total
energy h [12]. We a priori suppose that description of a motion of the system is given by the
set of two functions

:u:

J?ZX(t—to,h—hQ), p:P(t—tQ,h—ho),
where x and p to be the coordinates of trajectory and momentum, correspondingly. We also
suppose that this system is invertible, namely,

h=H(x,p), t=T(z,p).

Theorem 1 (§3)

Direct and Inverse Hamiltonian equations of motion are consequence of the
principle of form-invariance of the integral equation (3.3) over the mapping (3.4).

Proof.

We are looking for conditions for the mappings (h,t) = (z, p) over of which

//dh/\dtﬁ//dx/\dp.

This condition is satisfied if the Jacobian of the mapping (h,t) — (z,p) is equal 1:

Oxrdp Oz dp
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where the Jacobian matrix is defined by

Oor Ox

oh ot
Op Op

oh ot

J{(h,t) = (2,p)} =

As far as the determinant of the matrix for J{(h,t) — (z,p)} is equal to one then inverse
matrix is equal to adjoint matrix:

_Op Oz

_ ot ot
JH(h,t .p)} =

{(h,t) = (z,p)} o os

oh  Oh

According to the well known property of Jacobian inverse Jacobian matrix coincides with
Jacobian matrix of inverse mapping. It gives

op Oz oH oH
ot ot | | oz op
o or | or or (3.5)
oh  Oh oxr Op
By equating the elements of these matrices we get two kind of Hamiltonian equations:
dp  OH Odxr OH
(a') E = —a—$, E = a—p, (36,(1/)
op 0T O oT
(0) o or on _a—p (3.6,b)

Of course, these two Hamiltonian systems are equivalent. From (3.6,a,b) it is easily seen, that
the functions h = H(z,p) and ¢t = T(x,p) are mutually exchanged. The solutions of both
system are given by the same set of functions: p = p(h,t), x = z(h,t).

Consider now the case of 2n-dimensional phase space. The solution of the dynamical
equations in that case are given by by the following set of functions

' =2t —to,h,cs, ... Con), D= Di(t —to, hycs, . con), i=1,2,...n, (3.7)

where cs, ..., c9, are the other constants of motion.
We assume that the system (3.7) is invertible, so that

t=T(x1,p1,-- Tn,Dn), h=H(x1,p1,...Tn,0n), c=Ci(x1,p1,- - Tpypn), 1 =3,...,2n.

(3.8)
The condition of the Theorem 1 (§3) is satisfied if
0" Op; 02 Op;
Now any element of the Jacobian matrix is n-dimensional vector:
ort Or
oh Ot
J{(h,t) = (z,p)} = (3.10)
Jpi Op;

Oh Ot
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Taking into account (3.9) we get

Tty = @p=| (3.11)
8pi _8xl
oh oh
By equating this matrix with the Jacobian matrix of the inverse mapping
OH OH
oxrt  Op;
Hp2) = (O} =1 50 o7 (3.12)
oxt Op;’
we get two kind of Hamiltonian equations in 2n-dimensional phase space
Op; OH 0x* OH
e 3.13
ot~ o’ ot op, (3.13,0)
op; 0T  Ox' ar
D ° = (3.13,b)

oh oz’ Oh  op
&

The validity of the above consideration can be easily demonstrated on the oscillator model.
Consider direct mapping

z(h,t) = V2h sin(t), p(h,t) = V2h cos(t)

and its inverse one .
T
h(w,p) = 5(=* +p%), tan(t(z,p)) = o

These mappings satisfy all conditions of the Theorem 1 (§3) and gives arise oscillator equations
of motion.

4 Liouville theorem. Evolution equations in D = 2n phase space.
Nambu dynamical equations

As it has been noted above, the solutions of two equivalent Hamilton systems (3.13,a,b) are
represented by the functions

xi :$i(H7TaC3ac4a"'702n)7 Di :B(HaTacSaC47"-a02n) (41)

This set of functions one may consider as direct mapping. In previous section we have considered
inverse mapping only with respect to the pair {H,T}. Consequently, the Hamiltonian systems
of equations gave arise. Now let us put on the top the Liouville theorem, according to which

the 2n-th Poincaré integral by

is invariant of the motion. Define the following integral equation
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For sake of convenience let us introduce the notations

{g:} =41, ., 20,00y -0}, {Qi}={H,T,Cs,...,Co,}, i=1,....2n (4.4)

and consider the complete direct-inverse mapping given by

{¢=Q} (4.5)
Theorem 2 (§4)

Direct and Inverse Hamilton-Nambu equations of motion are consequence of
the principle of form-invariance of the integral equation (4.3) over the mapping
(4.5).

Proof.

The mapping {¢ — @} is mapping of 2n phase space coordinates onto 2n of constants of
motion. Jacobian matrix of this mapping is defined by

% I
0Q1  0Qan
HQ—aqt=1| ... ... .. (4.6)
Oqon Oqan
0Q1  0Qan

The principle of form-invariance of (4.3) yields the condition

— oq 0qan,
et aQu o ann

where we used the definition of determinant of (2n x 2n) matrix. Further, as it has been done
above, we shall equate any element of adjoint Jacobian matrix J{@) — ¢} with the corresponding
element of Jacobian matrix of inverse mapping J{q — @}. As the result we get the following
set of evolutionary equations

an‘k — e oq OQk—1 aCIkH 9qan,
Oqr,  TOQu T 0Qu_, 0Qu,, T 0Qs,
Now, wvice versa, let us take the Jacobian of mapping {¢ — @} and compare its adjoint

matrix with the corresponding Jacobian matrix of inverse mapping {¢) — ¢}. In that case the
principle of form invariance of (4.3) yields the condition

_ . 9@ 0Qu _
ot aqz& o aqim

DetJ{Q — ¢} =1, (4.7)

(4.8)

DetJ{q — Q}

1, (4.9)

As the result one obtains the evolutionary equations inverse to (4.8):

0qi, — e Q1 0Qk—1 0Qk+1 0Qan, (4.10)
an 21...12n aqil e aquﬁl aqik+1 N aqi% . .

¢

The system of equations (4.10) coincides with the Hamilton-Nambu equations in the
phase space with even set of coordinates while the equations (4.8) we can consider as
inverse Hamilton-Nambu equations. The relationships (4.7) and (4.9) we may consider as the
generalization of the Lagrange and the Poisson brackets, correspondingly.
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Nambu dynamical equations in D = 3-dimensional phase space

Now let us use Theorem 2 (§4) to obtain equations of motion in D = 3-dimensional phase
space. Suppose that the phase space is given by the triplet of the set of variables {z,p,q}. It
means, the motion of the dynamical system is described by the functions

l’:,’,ﬁ(t,hl,hg), p:p(t7h17h2)7 QIQ(t7hl7h2)-
The variables ¢, hy, hy in various formulations can play different role. Denote the set of functions
{t = T(._'L',p, q)7 hl = Hl(ajap) Q)a h? = H2(£7pa Q)}

by {@} and the set of variables {z,p, ¢} by {q}.
Consider the mapping {¢ — @} with Jacobian matrix

0OH, 0H, 0H,;
or JOp Oq
or or oT
J = _— = 4.11
R (a.11)
0Hy, OHy; OH,
Jdr Op Oq
with detJ({q — @Q}) = 1. The Jacobian of the inverse mapping is
Jr Ox Ox
Ohy Ot Ohs
dp Op Op
J = —/— — —/— 4.12
(Q—a)-| - 2 2 (1.12)
9g 0q g
Ohy Ot Ohs
Adjoint matrix for J({qg — Q}) is
or  or oH, 0H, oH, 0H,
—det( op 9 det | 2 % —~det | % %
OHy OHy OHy OHy or  or
op  Oq Op  Oq dp  Oq
or  or oH, 0H, 0H, 0H,
-1 _ _ 0 oz 0 oz _ 0 ox
J{g—Q}) = det ﬁ oty det 6_132 oty det ﬁ or (4.13)
dq Ox dq O dq Ox
or  or OH, 9H: OH,  9H:
—det( oz dp det oz dp —det oz op
OHy OH, 0Hy OH, or  or
ox op oz op Ox Op

By equating the matrices (4.12) and (4.13) we get
) OH1 9H: B OH1 OHy ) OH1  9H:
= — det ( T IR ) BTN B Y B (4.14)
ot OHy OH, ot OHy OHa ot OHy OH,
dp dq dq Or oz Op

Thus, we obtained the Nambu’s equations of motion [6].
With the same way one can define:
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Q
8

o op oz Oa 0z
—det ot ho det ot  Oha —det ot
99 9q 99  9q op
ot  Oha ot  Oha ot

Op  Op Oz Oz Oz
—1
@z ah) = | el | G Gy ) det| oy o | et

Oh1 Oho
and equate this matrix with the Jacobian matrix J({g — @}). As the result one finds

> Q
ge g

&
>
S
(@) Q

Q Q
Sle &ls
N———

9p op Oz Oz Oz
_det Oh1 Ot det Oh1 Ot _det Oh1
9q  0q 9q  9q Op.
Ohy Ot Ohy Ot Oh1

e gR

Op 0q _9p dg _ OH,

Ohy Ot Ot Ohy  Ox

dq Or Oq dr  OH,

Zt =z _ A7 T 4.1
Ohy Ot Ot Ohy dp (4.15)
Or dp  Ox dp _ 0H,

Ohy Ot Ot Ohy  Oq

These equations we can consider as tnverse Nambu’s equations.

5 Polylinear Oscillator Model in the Basis of Multicomplex Algebra

Oscillator model is one of the oldest models of the classical mechanics. The solutions of this

model are given by cosine&sine functions. The equations of motion of one dimensional oscillator
may be written in two equivalent forms:

(a) In the matrix form
d [z 0 1 x
o7 = , (5.1)
p -1 0/ \p

r = V2h sin(t), p=V2h cos(t).
(b) In the basis of complex algebra

with the solution

d
—i%z =z, z=p+iz, (5.2)

with the solution
z = V2h exp(it),

where the constant of motion h, energy, is defined by

1 1
h = 5(:c2 +p?) = 577

In the Hamiltonian formalism this function plays a role of the Hamiltonian of the system:
h = H(x,p). Hamiltonian form of the Eqgs. (5.1) and Egs. (5.2), correspondingly, are given by

d (x 0 1 2
O
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—i% (p + z:c) - (% + i%)H(x,p). (5.3, )

In the connection of complex form of equations of motion note F.Strocchi [13] gave the
formulation of Schrodinger equation as Hamiltonian equations in complex coordinates where
Hamiltonian function is the mean value of the corresponding quantum operator.

In this section we build one example of dynamical equations of motion in D > 3- dimensional
phase space, we denominate polylinear oscillator model. This model is direct extension of
the ordinary oscillator model in two-dimensional phase space. The solutions of the latter
are given by the tri-gonometric functions or by the complex algebra. Correspondingly, the
solutions of the polylinear oscillator model are given by the multicomplex algebra or by
poly-gonometric functions. We show, the polylinear oscillator model is oscillator model for the
Nambu’s formulation of generalized Hamiltonian dynamics.

Thus, we are looking for equations for a new oscillator model the solutions of which are
given by the polygonometric functions:

n—1

g = (nh)wmus;(¢), ¢ = (nh)"% mus,(—p), i=1,..,n, (5.4)

where h = %|z|” is the "energy" of the polylinear oscillator model. The polygonometric
functions depend of (n — 1)-angle. Complement this set of variables with the variable ¢, = h
to get the set of n variables: {¢1, ..., p,}. Differentiating ¢;, ¢* with respect to h we obtain

d¢ n-1 dq 1

— l -

Let us consider two set of independent coordinates: {¢',¢? ...,¢"} and {¢1,...,0n_1,Pn}-
The Jacobian of the mapping

{q17q27 .- 7qn} - {8017 s .,gpn,l,gon}

is equal to one:

det(?—i) - %det(Xl:(Ej)ém) —1. (5.6)

dpr 0
Let us evaluate the following derivatives: %,% One may find these values by
a 04
using the formulae (2.21,a,b) (5.6) and (5.7). By differentiating the set of functions
or = pr(dt ¢ ...,q"), (k = 1,...,n) with respect to the variables ¢;, (I = 1,...,n) one

obtains the linear system of the algebraic equations:

0 , 0 . .
Spi = ai;f(EZ)iq", Si = —a%f(El);q,,, ki=1,2..n—1, (5.7, a)
_ =~k k=1,2,..,n. 7,0
5kn nh (?ql q, kn nh aql qi, y iy ey T (5 77 )
The solutions of Egs.(5.7,a,b) with respect to %, % are given by
a  oq
aQOk 1 _ 0gok 1 _

(5.8,b)
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Equations (5.8,a,b) one may consider as the extension of the oscillator equations of motion with
the first integral of motion given by

1
H = —|z|". .

The function h = H(z) we choose as Hamiltonian of the system. By substituting (5.8,b) into
right side of (2.21,b) we obtain next evolution equations for the coordinates ¢; and ¢* with
respect to the evolution parameters ¢, k=1,...,n — 1:

Jy ol OH
=(n-—1 — 1
agpk (n )(E )7, aq[ ) (5 07 a)
= — . 5.10,b
Do e ( )

Obviously, for n = 2 this system of equations is reduced to the Hamiltonian equations (5.4,a).
As far as we consider H as the Hamiltonian of the conservative system, in general, the following
conditions should be satisfied

dH
depy,
By using Egs.(2.21,b), (5.8,b) we get

0, k=1,...,n—1. (5.11)

dH  0q 0H 9q' 0H GOHOH . 0HOH
dor  Opr Oq Oy 0¢ (n=1(E )Zaql dq; (B Oq 0¢°
sOH OH
k
o _ 1

Thus the condition (5.12) is satisfied automatically for n = 2 case. This is the case of ordinary
oscillator model. For n > 3 the condition (5.8) will be satisfied if the derivatives
OH OH
Dm = 5 D" = —
™ m
are related similar co- and contra- variant coordinates ¢;, ¢* according to our definition of the
polylinear metrics given in Sec.2. It easily seen, in the case of polylinear oscillator model this
condition is fulfilled because (5.8,b). In the general case the following relations between D™
and D,, hold ' o
DZ — )\7]111---2n—1 ‘Di1 N DZ.n717 (513)

where A for the polylinear oscillator is given by
A= (n—1)""D,

By substituting (5.13) into Eqs.(5.10,b) we obtain
OH OH

dq' kNS lig--ei
— —A(ERypfine 2
O (Em O " g

(5.14)

These equations are given in the terms of the contra-variant coordinates.

Theorem 3 (§5)

If the dynamical variables ¢; of the system are coordinates of multi-oscillator
model then they satisfy to the following system of equations:

(itin-1 0¢;, 0¢i, 0, _, _ OH
01 0y 01 0g;

(5.15)
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To prove it is sufficient to transform (5.10,a) into (5.15). From Egs.(5.10,a) we obtain the

following system of equations
oH 1
ogv n—1

i 0g;

T k=1,....n—1 l,=1,...,n (5.16)

(E7)

By substitute these relations into the right side of (5.13) and taking into account the formulas
(2.22) we get

OH _ iil'“in—l(E—l)h th (E—(n—l))lnfl aqln—l _ aqz1 aql2 aqin—l
Jqi topr

P,y iwn s g1 Oy Opn_y
¢

Thus we obtained Inverse Nambu’s Equations.
Similar the case of two-dimensional oscillator model we can elaborate inverse polylinear
oscillator equations. Combining (5.8,a) with (5.5) we can write

Do 1 N dq'
= E7F), — 5.17
aqz n—l( )ldgpn’ ( 7a)
Doy _inl dg
= (BT . 5.17,b
k= (T (517,5)
Now let us rewrite the set of equations (5.17,a,b) in the following form
dq' wlOHp  dg i OH}
— =—(n—1)(E£"), — = A k=1,....n—1 1
dt (n )( )z an ) dt ( )l aqz ’ ) y T ’ (5 8)
... dH} . .
where we denoted Hy = ¢, t = ¢,. The condition o 0 is fulfilled if
1 dg; dg*
—— (EFY 2 =
n— 1( ) dt dt 0
from which we obtain A 4
dg 1 dg" dg'—1
= g, e ) 1
dat ATy dt (5.19)

The equations (5.18) one may consider as inversion of the system (5.10,a,b). This formulation
consists of (n — 1)- Hamiltonian Hy = ¢y, Hy = ¢o,..., H, = ¢,_1 and only one time-like
parameter, t = @,.

The relation of obtained system equations with Nambu equations is given by following

Theorem 4 (§5)

The solutions of the equations (5.18)—(5.19) satisfy to the following system of

Nambu’s equations
OH,0H,  O0H,-1 _ dg

i1.in—1 : = 5.20
“ " aQH aqw aqin,1 dt ( )
Proof
Let us form the following expression
H, OH H,_
Dety(Hy, ..., H,_y) O, 0Hy | OHyy (5.21)

= €liq iy . .
! ' aQH aqw aq@nfl



R. M. Yamaleev Dynamics in D > 2-order Phase Space in the Basis of Multicomplex Algebra &9

By using Egs.(5.18) we get

1

in_1 dqll dql’“l
(n— 1)1 ’

Dety(Hy, ..., H,_,) = s

Eli1~~~in71(E1)2 s (En_l) (5'22)

Now taking into account the formula (2.22) we can transform (5.22) as

dqil dqin—l
D t H Hn, - ileip1 3, " .
€ z( Iy eees 1) Mii1--iy, i I

The latter just equal to % because (5.19). Thus we obtain (5.20) which coincides with the well
known Nambu’s system of equations. &

Conclusion

Summarizing we come to the following conclusions.

The many particle system is described by 2n-dimensional phase space coordinates. The
solutions of the equations of motion are defined by 2n constants of integration or equal,
constants of motion. The other form of the constants of motion one may represent via 2n
Poincaré integrals. Let us consider even set of Poincaré integrals: Py, Py, ..., Ps,. We have two
possibilities.

1. The particles of the system obey to form-invariance principle of P, (Theorem 1(8§3)).
Then the motion of the particles is described by Hamiltonian equations.

2. The particles of the system obey to form-invariance principle of P, (Theorem 2(8§4)).
Then the motion of the particles is described by Hamilton-Nambu equations.

Let us note, P, is the square in two-dimensional phase space while P, is the volume in
D = 2n-dimensional phase space. This fact prompts us an idea to use the algebras based
on the polylinear forms. The pseudo-norm of the multicomplex algebra exactly is defined by
D-dimensional volume (see, (2.22)). Thus, it occur, the multicomplex algebra is related with
Hamilton-Nambu equations similar the complex algebra is related with Hamilton equations.
On the other hand, we can use multicomplex algebra as "key thread" to generalize Haniltonian
equations of motion. In this way, we have constructed the oscillator model for the Hamilton-
Nambu dynamical equations. We have found the dynamical equations in D > 2- dimensional
phase space with (D — 1)-evolution parameters and single Hamiltonian. The oscillator model
in a such dynamics is generated by the Hamiltonian defined by D-degree homogeneous form.
The solutions are represented by the set of polygonometric functions depending of (D — 1)
angle. We have shown, these equations can be inverted. As the result we have obtained the

dynamical equations in D- dimensional phase space with an single evolution parameter and
(D — 1) Hamiltonian.
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JANMHAMMWKA B ®AZ0BOM IIPOCTPAHCTBE ITIOPA/IKA D > 2
B BABUNCE AJITEBPBI MVYJIBTUKOMIIJIEKCHBIX UYNUCEJI

P.M. dmanees

Havuonarvruli Aemonommoid yrusepcumem Mexcuxu, Mexuxo, Mexcuxa,
Obsedunernnnti yrnusepcumem adeprvix uccaedosanut, yomna
iamaleev@servidor. unam.mz

MpbI uCIIoIb3yeM KOMMYTATUBHYIO GA2€0DY MYALMUKOMNACKCHOLL YUCEA, TTOOBI TOCTPOUTH MOJIEIH
OCITUJLISITOPA JJist uHaMukn [aMuiabroHa-HaMOy. MbI mpegjiaraeM HOBBIN JUHAMUYIECKUM TPUHIIAIL, U3
KOTOPOI'0 BBITEKAIOT JBa Buja ypasBuenwnii ['amumibrona-Hamby B D > 2- mepnoMm a3oBOM MpOCTpaH-
cree. Ilepsbiit bopmysmpyercst ¢ (D — 1)-napamMerpoM 3BOJIIOIMA W €INHCTBEHHBIM TAMUJIBTOHUAHOM.
laMuabTOHMAH MOJEAN OCIMJLISTOPa B TAaKOH JMHAMHUKE 3aaeTCs OTHOPOMHON dopmoii cremenu D.
Bo Bropoit (popMysmmpoBKe, HA0OOPOT, IBOJIIOIUS CUCTEMbBI BIIOJIb €IMHCTBEHHOIO IIapaMeTpa SBOJIOINN
rerepupyercst (D — 1)- ramuiabronnanom. [ocsenauit 3anaercs ypasaerausimu HavGy B D > 3-mepHOM
¢da30BOM IIPOCTPAHCTBE.

KitroueBnbie ciioBa: KowmiiekcHbie uncia, 0000IIeHHast Tpuronomerpusi, nuddepeHiuaibibe ypas-
HEHWs, KJIACCUIECKAasl MEXaHWKa, raMIJIbTOHUAH, (pa30BOe MPOCTPAHCTRO.

PACS: 03.65.sg (semiclassical theory and applications), 02.10.ud (linear algebra), 02.10Xm
(multilinear algebra)



