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Key-words: complex numbers, generalized trigonometry, differential equations, classical
mechanics, Hamiltonian, phase space.

PACS: 03.65.sg, 02.10.ud, 02.10Xm

1 Introduction

The algebras widely using in the mathematical physics, such as classical Clifford algebras,
have their definitions from quadratic or bilinear relations. This is a consequence, rather, the
bilinear aspects of fundamental objects such as quadratic metrics, canonical pair of the phase
space variables, commutation relations etc. A real Clifford algebra is generated by the set of
basis vectors {ei, i = 1, ..., n} and defining relations eiej + ejei = 2gij where gij ∈ R are the
coefficients of a non degenerate symmetric bilinear form. If the set is orthonormal the defining
relations reduce to

eiej = −ejei, e2i = ±1. (1.1)

The classical Clifford algebra admits a Z2- graded structure. Wide investigations of the classical
Clifford algebras have been initiated by success of the Dirac equation. However, besides Clifford
algebras one may build an algebraic extension, the Generalized Clifford Algebras. New algebra
equipped with a metric defined by a homogeneous polynomial form of degree n naturally leads
to an underlying Zn-graded structures [1], [2]. These algebras, just as Clifford algebras, emerge
from various contexts. About the problem on usefulness of the hypercomplex numbers in physics
have been dedicated several papers (see, for instance, A.A. Eliovich [4] and references therein).
Properties of the hypercomplex algebra of fourth order have been successfully applied to explore
Berwald-Moor metric in Finslerian geometry [3]. Specially, the efforts in the developments of the
multicomplex algebras are motivated by the new ideas which occur in quantum mechanics based
on homogeneous metrics of degree higher than two [5]. However, besides the quantum mechanics
it is also great interest to construct the classical mechanics based on high degree metrics.
Generalization of Hamiltonian mechanics based on the extension of binary operation on classical
observable to the phase space with multiple operation of higher order (D ≥ 3), has received
much attention in the recent literature since Nambu’s contribution [6]. Y. Nambu proposed
the generalization of Hamiltonian dynamics by introduce a triplet of dynamical variables which
spans a tree-dimensional phase space, instead of a canonical pair. As a result, the state of a
system is represented by a point in the three-dimensional phase space, and this point moves
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with time along a curve in the three-dimensional phase space. Since the publication of Nambu’s
paper, different aspects of this problem have been studied by several group of authors [7].

In the present paper we propose a dynamical principle from which it follows two kind of
Hamilton-Nambu equations in D ≥ 2-dimensional phase space. The first one is formulated with
(D−1) Hamiltonian and single parameter of evolution, the Nambu equations. In Ref. [8], we have
proposed an extension of the Newtonian mechanics in D ≥ 3 dimensional phase space within
the Nambu’s formalism. As a consequence, three-dimensional phase space oscillator model
within Jacobi elliptic functions for the extended Newtonian mechanics has been constructed.
The second kind of dynamics is formulated with (D − 1)-evolution parameter and a single
Hamiltonian. The Hamiltonian of the oscillator model of the latter is given by D-degree
homogeneous form. This dynamics in some sense is the inverse one to the Nambu dynamics.

In Sec. 2 we recall the basic notions of the multicomplex algebra and the theory of the
polytrigonometric functions.

In Sec. 3 we show that there exist two kind of the Hamiltonian equations, namely, direct
Hamiltonian equations can be coupled by their inverse formulation.

In Sec. 4 we show that the Nambu-Hamilton equations admit its inverse formulation.
In Sec. 5 we derive the dynamical equations in D- dimensional phase space with (D − 1)-

evolution parameters and single Hamiltonian in terms of the co- and contra-variant coordinates
defined in the space with polylinear metric form. We construct the polylinear oscillator model.
The underlying algebraic structure of the polylinear oscillator model is the multicomplex
algebra.

2 Commutative Part of Generalized Clifford Algebras.
Polygonometric functions

The Generalized Clifford algebras (GCA) Cl(n)
p is generated by a set of p canonical

generators e1, . . . , ep fulfilling:

eiej = ωsg(j−i)ejei, en
i = ±1, i, j = 1, . . . , p (2.1)

where ω = exp (2iπ
n

) is a n-th primitive root of unity and sg(x) the usual sign function.
In this paper we shall use the commutative part of the GCA. A commutative part of the

classical Clifford algebra is generated by unique generator e, with e2 = ±1.When the generator
e is given by e2 = −1 then one has well known algebra of Complex Numbers . Similarly, a
commutative part of GCA is the algebra of unique generator e, satisfying to the conditions
en = ±1. This is n-dimensional commutative algebra. A detail description of this algebra for
en = 1 a reader may find in [9]. In this paper we shall consider the algebra with the unique
generator defined by en = −1, we shall denominate Algebra of Multicomplex Numbers (MCn). It
is worth to underline that most of the results of the usual complex number analysis remain true
forMCn-number analysis. Let us sketch briefly the basic and useful properties of multicomplex
algebra and its elliptic mappings which are direct extension of the cosine&sine functions. More
detail description of this algebra reader may find in [10].

Any z ∈MCn is defined by finite series expansion

z =

n∑
i=1

ei−1qi, e0 = 1. (2.2)

Among the unitary equivalent matrix representations of the operator e we shall use one given
by anticirculant matrix
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(E)l
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 ... 0

0 0 1 0 ... 0

. . . . ... .

0 0 0 0 ... 1

−1 0 0 0 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3)

This matrix satisfies the following condition

En = −I (2.4)

and gives arise to convenient matrix representation of z ∈ MCn:

Z l
m =

n∑
i=1

qi(E
i−1)l

m. (2.5)

By using the matrix E a product of two MCn-numbers one may represent in the following
convenient way { n∑

i=1

ei−1ai

}{ n∑
i=1

ei−1bi

}
=

n∑
i=1

ei−1ci,

with

ck =
n∑

l=1

(El−1bl)
m
k am =

n∑
l=1

(El−1al)
m
k bm. (2.6)

The inverse MCn-number z−1 we shall define via the notion of inverse matrix Z−1. In search
of Z−1 we find n-order of pseudo-norm of Z as the determinant:

|Z|n = det{Z l
m}. (2.7)

Definition: |z|n = |Z|n.
Thus |z|n, as well |Z|n, is an homogeneous form of n degree relatively qi:

|z|n = ηi1...inqi1 . . . qin, (2.8)

where the summation convention is adopted. Obviously,

|z1 z2|n = |z1|n |z2|n (2.9)

Any MCn-number is coupled by its conjugation. The conjugation of z is given by the following

Definition:
z̄ ∈MCn is conjugation of z ∈MCn if z̄z = |z|n.

Let us represent z̄ by the series

z̄ =

n∑
i=1

qie−(i−1).

The coordinates qi, qj we call as covariant and contra-variant coordinates, correspondingly.
These are the components of the vector in n-dimensional space, while |z|n can be interpreted as
a square of the length of a such vector. These coordinates satisfy the following bilinear relations

qiqi = |z|n, (Ek)
i

lq
lqi = 0, k = 1, · · · , n− 1, (2.10)
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from which one may form n- dimensional orthogonal basis defining

hi
j =

n∑
k=1

(Ek−1)i
j qk, hi

j =
n∑

k=1

(E−(k−1))j
i q

k. (2.11)

These vectors are mutually orthogonal because

hi
phj

p =
n∑

k=1

n∑
l=1

(Ek−1)i
p qk(E

−(l−1))p
j q

l = |z|nδi
j , (2.12)

where we used (2.6) and (2.10).
By using (2.8) and (2.10) one finds explicit relationships between qi and qi:

qi = ηii1···in−1qi1 · · · qin−1 . (2.13)

Any MCn-number defined by the condition |z|n = 1 can be given in the exponential
representation:

z = exp
(n−1∑

i=1

ϕie
i
)
. (2.14)

Then, an expansion straightforward gives arise to the analogue of Euler formula:

z =
n∑

i=1

musi(ϕ)ei−1, ϕ = {ϕ1, · · · , ϕn−1}. (2.15)

These "mus" -functions one may consider as extension of the usual set of cosine&sine functions.
For n = 2 one recovers the tri-gonometric functions:

mus1(ϕ) = cos(ϕ), mus2(ϕ) = sin(ϕ),

correspondingly, the condition |z|n = det(Z l
m) = 1 is reduced to well known identity: cos2(ϕ) +

sin2(ϕ) = 1. We suggest to denominate the set of functions musi(ϕ), i = 1, · · · , n as poly-
gonometric functions.

In the polar coordinates the MCn-number is defined by

z = ρ exp
(n−1∑

i=1

ϕie
i
)
, (2.16)

where ρ = |z|.
Further, it has sense to introduce the notion of the partially conjugated MCn-numbers. By

using
n∑

i=1

ωi = 0, ω = exp (
2iπ

n
),

we write
z(0)z(1)z(2) . . . z(n−1) = ρn, (2.17)

where

z(k) = ρ exp
(n−1∑

i=1

ωkieiϕi

)
.

MCn-numbers z(k), k = 1, 2, ..., n − 1 we shall call partially conjugated of z. Form (2.17) it
follows

z̄ = z(1)z(2) . . . z(n−1).
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It is useful to keep in mind also:

|z̄|n = |z(1)|n|z(2)|n . . . |z(n−1)|n = ρn(n−1), (2.18)

because
|z(k)| = ρ, k = 1, 2, ..., n− 1.

The following representations for z̄ hold

z̄ =
n−1∏
l=1

n∑
i=1

qiω
l(i−1)ei−1, z̄ = ρn−1 exp(−

n−1∑
i=1

ϕie
i). (2.19)

We can also define conjugation of z̄, so that,

z̄ ¯̄z = ρn(n−1). (2.20)

By taking into account that for any z we have unique z̄ we come to the conclusion that

¯̄z = λz

where λ = ρn(n−2).
To derive the derivatives of the poly-gonometric functions it is enough to use the series

expansions (2.14), (2.15). Setting equal the expressions at any ei in

∂

∂ϕj
exp

(n−1∑
i=1

ϕie
i
)

= ej exp
(n−1∑

i=1

ϕie
i
)

one gets
∂

∂ϕk

musl(ϕ) = (Ek)
m

lmusm(ϕ), k = 1, . . . , n− 1. (2.21, a)

For the coordinates, correspondingly, we get

∂qi
∂ϕk

= (Ek)
l

iql,
∂qi

∂ϕk

= −(Ek)
i

lq
l. (2.21, b)

For convenience of a reader let us repeat the above formulae for the case z ∈MC3.

Definition:

z = q1 + eq2 + e2q3, e3 = 1.

Conjugation:
z̄ = q1 + e−1q2 + e−2q3.

Pseudo-norm:
|z13 = q1q

1 + q2q
2 + q3q

3.

Partial conjugations:

z(1) = q1 + ωeq2 + ω2e2q3, z
(2) = q1 + ω2eq2 + ωe2q3.

Relationships between covariant and contra-variant coordinates:

q1 = (q1)
2 + q2q3, q2 = −(q2)

2 + q1q3, q3 = (q3)
2 + q2q1.
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Formulae of differentiation.
For the covariant vectors:

∂

∂ϕ1

(
q1 q2 q3

)
=

(
−q3 q1 q2

)
,

∂

∂ϕ2

(
q1 q2 q3

)
=

(
−q2 −q3 q1

)
For the contra-variant vectors:

∂

∂ϕ1

⎛
⎜⎜⎝
q1

q2

q3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−q2

−q3

q1

⎞
⎟⎟⎠ ,

∂

∂ϕ2

⎛
⎜⎜⎝
q1

q2

q3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−q3

q1

q2

⎞
⎟⎟⎠ .

In conclusion of this section, let us give one useful representation for the pseudo-norm of z.
To give a main idea, let us begin from the case n = 3. According to the definition:

|z|3 = det(Z) = det

⎛
⎜⎜⎝

q1 q2 q3

−q3 q1 q2

−q2 −q3 q1

⎞
⎟⎟⎠ .

Now let us recall the definition of the determinant of the matrix:

det(A) = det

⎛
⎜⎜⎝
a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎟⎟⎠ = εijkaibjck,

εijk is the Levi-Civita tensor. By equating the matrix A with the matrix Z we find

al = (E0)i
lqi, bl = (E1)i

lqi, cl = (E2)i
lqi.

Therefore,
|z|3 = det(Z) = εijk(E0)p

i (E
1)l

j(E
2)m

k qpqlqm.

In the general case we get

|z|n = εl1l2···ln(E0)
i1
l1
(E1)

i2
l2
· · · (En−1)

in
ln
qi1 . . . qin . (2.22)

3 Direct and Inverse Hamiltonian Equations

Let us recall the basic elements of Hamiltonian dynamics. One has two dimensional phase
space on which the Poisson bracket structure obeying the Jacobi identity is defined. Further,
one has the Hamiltonian form for the equations of motion where the evolution in time of
a dynamical system is generated by a single function, the Hamiltonian. The basic canonical
structure of the phase space of Hamiltonian mechanics is carried by the canonical pairs of the
Cartesian coordinates.

Consider now isolated, macroscopic system consisting of N identical particles, each of which
has three translational degrees of freedom. The dynamical state of the system at a given time
completely specified by the 3N coordinates and 3N momenta of the particles. The values of
these variables define a phase point in a 2n = 6N - dimensional phase space. The classical phase
space for Hamiltonian mechanics consists of the pair of coordinates {xi, pi}, i = 1, ..., n and
Poisson bracket:

{f1, f2} =
∂(f1, f2)

∂(x, p)
=
∂f1

∂xi

∂f2

∂pi
− ∂f1

∂pi

∂f2

∂xi
, (3.1)
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where f is a classical observable, smooth function on the phase space and the summation
convention adopted.

A standard textbook presentation of the classical mechanics start from the first principles
of the classical mechanics, such as, the principle of least action, according to which the world
trajectories under the Hamilton phase flow are extremals of the action. Another principle is
invariance of the Poincaré integral

P2 =

∫ ∫
dxi ∧ dpi

over canonical mapping (xi(t), pi(t)) → (xi(t+ δt), pi(t+ δt)) [11].
One may generalize the latter to the case of Poincaré–Cartan integral

PC2 =

∫ ∫
dxi ∧ dpi −

∫ ∫
dh ∧ dt.

Instead of this we shall use the principle of the form-invariance of the integral equality∫ ∫
dxi ∧ dpi = μ

∫ ∫
dh ∧ dt (3.3)

over the mappings
(xi, pi) → (h, t), (h, t) → (xi, pi). (3.4)

Here, h is the Hamiltonian or, equal is the total energy of the system. (We suppose that an
interactions explicitly no dependent of time.) The constant of motion μ can be expressed of P2

and PC2:

μ =
P2

P2 − PC2

As far as our further results do not depend of μ, we shall take μ = 1.
Let us start from the case of one dimensional motion D = 2. In that case we have two

integrals of motion in the capacity of which one may choose: (1) the initial time t0, (2) the total
energy h [12]. We a priori suppose that description of a motion of the system is given by the
set of two functions

x = X(t− t0, h− h0), p = P (t− t0, h− h0),

where x and p to be the coordinates of trajectory and momentum, correspondingly. We also
suppose that this system is invertible, namely,

h = H(x, p), t = T (x, p).

Theorem 1 (§3)
Direct and Inverse Hamiltonian equations of motion are consequence of the

principle of form-invariance of the integral equation (3.3) over the mapping (3.4).
Proof.
We are looking for conditions for the mappings (h, t) � (x, p) over of which∫ ∫

dh ∧ dt �
∫ ∫

dx ∧ dp.

This condition is satisfied if the Jacobian of the mapping (h, t) → (x, p) is equal 1:

detJ{(h, t) → (x, p)} =
∂x

∂h

∂p

∂t
− ∂x

∂t

∂p

∂h
= 1,
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where the Jacobian matrix is defined by

J{(h, t) → (x, p)} =

⎛
⎜⎜⎝
∂x

∂h

∂x

∂t

∂p

∂h

∂p

∂t

⎞
⎟⎟⎠ .

As far as the determinant of the matrix for J{(h, t) → (x, p)} is equal to one then inverse
matrix is equal to adjoint matrix:

J−1{(h, t) → (x, p)} =

⎛
⎜⎜⎝

−∂p
∂t

∂x

∂t

∂p

∂h
−∂x
∂h

⎞
⎟⎟⎠ .

According to the well known property of Jacobian inverse Jacobian matrix coincides with
Jacobian matrix of inverse mapping. It gives⎛

⎜⎜⎝
−∂p
∂t

∂x

∂t

∂p

∂h
−∂x
∂h

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
∂H

∂x

∂H

∂p

∂T

∂x

∂T

∂p

⎞
⎟⎟⎠ . (3.5)

By equating the elements of these matrices we get two kind of Hamiltonian equations:

(a)
∂p

∂t
= −∂H

∂x
,

∂x

∂t
=
∂H

∂p
, (3.6, a)

(b)
∂p

∂h
=
∂T

∂x
,

∂x

∂h
= −∂T

∂p
(3.6, b)

Of course, these two Hamiltonian systems are equivalent. From (3.6,a,b) it is easily seen, that
the functions h = H(x, p) and t = T (x, p) are mutually exchanged. The solutions of both
system are given by the same set of functions: p = p(h, t), x = x(h, t).

Consider now the case of 2n-dimensional phase space. The solution of the dynamical
equations in that case are given by by the following set of functions

xi = xi(t− t0, h, c3, . . . , c2n), pi = pi(t− t0, h, c3, . . . , c2n), i = 1, 2, ..., n, (3.7)

where c3, . . . , c2n are the other constants of motion.
We assume that the system (3.7) is invertible, so that

t = T (x1, p1, . . . xn, pn), h = H(x1, p1, . . . xn, pn), cl = Cl(x1, p1, . . . xn, pn), l = 3, . . . , 2n.
(3.8)

The condition of the Theorem 1 (§3) is satisfied if

detJ{(h, t) → (x, p)} =
∂xi

∂h

∂pi

∂t
− ∂xi

∂t

∂pi

∂h
= 1. (3.9)

Now any element of the Jacobian matrix is n-dimensional vector:

J{(h, t) → (x, p)} =

⎛
⎜⎜⎝
∂xi

∂h

∂xi

∂t

∂pi

∂h

∂pi

∂t

⎞
⎟⎟⎠ . (3.10)
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Taking into account (3.9) we get

J−1{(h, t) → (x, p)} =

⎛
⎜⎜⎝

−∂pi

∂t

∂xi

∂t

∂pi

∂h
−∂x

i

∂h

⎞
⎟⎟⎠ . (3.11)

By equating this matrix with the Jacobian matrix of the inverse mapping

J{(p, x) → (h, t)} =

⎛
⎜⎜⎝
∂H

∂xi

∂H

∂pi

∂T

∂xi

∂T

∂pi

,

⎞
⎟⎟⎠ (3.12)

we get two kind of Hamiltonian equations in 2n-dimensional phase space

∂pi

∂t
= −∂H

∂xi
,

∂xi

∂t
=
∂H

∂pi
(3.13, a)

∂pi

∂h
=
∂T

∂xi
,

∂xi

∂h
= −∂T

∂pi
(3.13, b)

♦
The validity of the above consideration can be easily demonstrated on the oscillator model.

Consider direct mapping

x(h, t) =
√

2h sin(t), p(h, t) =
√

2h cos(t)

and its inverse one
h(x, p) =

1

2
(x2 + p2), tan(t(x, p)) =

x

p
.

These mappings satisfy all conditions of the Theorem 1 (§3) and gives arise oscillator equations
of motion.

4 Liouville theorem. Evolution equations in D = 2n phase space.
Nambu dynamical equations

As it has been noted above, the solutions of two equivalent Hamilton systems (3.13,a,b) are
represented by the functions

xi = xi(H, T, C3, C4, . . . , C2n), pi = Pi(H, T, C3, C4, . . . , C2n) (4.1)

This set of functions one may consider as direct mapping. In previous section we have considered
inverse mapping only with respect to the pair {H, T}. Consequently, the Hamiltonian systems
of equations gave arise. Now let us put on the top the Liouville theorem, according to which
the 2n-th Poincaré integral by

P2n =

∫
. . .

∫
dx1 ∧ . . . ∧ dxn ∧ dp1 . . . ∧ dpn (4.2)

is invariant of the motion. Define the following integral equation∫
. . .

∫
dx1 ∧ . . . ∧ dxn ∧ dp1 . . . ∧ dpn =

∫
. . .

∫
dH ∧ dT ∧ dC3 ∧ dC4 . . . ∧ dC2n (4.3)
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For sake of convenience let us introduce the notations

{qi} = {x1, . . . , xn, pn, . . . , pn}, {Qi} = {H, T, C3, . . . , C2n}, i = 1, . . . , 2n (4.4)

and consider the complete direct-inverse mapping given by

{q � Q} (4.5)

Theorem 2 (§4)
Direct and Inverse Hamilton-Nambu equations of motion are consequence of

the principle of form-invariance of the integral equation (4.3) over the mapping
(4.5).

Proof.
The mapping {q → Q} is mapping of 2n phase space coordinates onto 2n of constants of

motion. Jacobian matrix of this mapping is defined by

J{Q→ q} =

⎛
⎜⎜⎜⎜⎝

∂q1
∂Q1

. . .
∂q1
∂Q2n

. . . . . . . . .
∂q2n

∂Q1
. . .

∂q2n

∂Q2n

⎞
⎟⎟⎟⎟⎠ (4.6)

The principle of form-invariance of (4.3) yields the condition

DetJ{Q→ q} = εi1...i2n

∂q1
∂Qi1

. . .
∂q2n

∂Qi2n

= 1, (4.7)

where we used the definition of determinant of (2n× 2n) matrix. Further, as it has been done
above, we shall equate any element of adjoint Jacobian matrix J{Q→ q} with the corresponding
element of Jacobian matrix of inverse mapping J{q → Q}. As the result we get the following
set of evolutionary equations

∂Qik

∂qk
= εi1...i2n

∂q1
∂Qi1

. . .
∂qk−1

∂Qik−1

∂qk+1

∂Qik+1

. . .
∂q2n

∂Qi2n

(4.8)

Now, vice versa, let us take the Jacobian of mapping {q → Q} and compare its adjoint
matrix with the corresponding Jacobian matrix of inverse mapping {Q → q}. In that case the
principle of form invariance of (4.3) yields the condition

DetJ{q → Q} = εi1...i2n

∂Q1

∂qi1
. . .

∂Q2n

∂qi2n

= 1, (4.9)

As the result one obtains the evolutionary equations inverse to (4.8):

∂qik
∂Qk

= εi1...i2n

∂Q1

∂qi1
. . .

∂Qk−1

∂qik−1

∂Qk+1

∂qik+1

. . .
∂Q2n

∂qi2n

. (4.10)

♦
The system of equations (4.10) coincides with the Hamilton-Nambu equations in the

phase space with even set of coordinates while the equations (4.8) we can consider as
inverse Hamilton-Nambu equations. The relationships (4.7) and (4.9) we may consider as the
generalization of the Lagrange and the Poisson brackets, correspondingly.
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Nambu dynamical equations in D = 3-dimensional phase space

Now let us use Theorem 2 (§4) to obtain equations of motion in D = 3-dimensional phase
space. Suppose that the phase space is given by the triplet of the set of variables {x, p, q}. It
means, the motion of the dynamical system is described by the functions

x = x(t, h1, h2), p = p(t, h1, h2), q = q(t, h1, h2).

The variables t, h1, h2 in various formulations can play different role. Denote the set of functions

{t = T (x, p, q), h1 = H1(x, p, q), h2 = H2(x, p, q)}

by {Q} and the set of variables {x, p, q} by {q}.
Consider the mapping {q → Q} with Jacobian matrix

J({q → Q}) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂H1

∂x

∂H1

∂p

∂H1

∂q

∂T

∂x

∂T

∂p

∂T

∂q

∂H2

∂x

∂H2

∂p

∂H2

∂q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.11)

with detJ({q → Q}) = 1. The Jacobian of the inverse mapping is

J({Q→ q}) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂h1

∂x

∂t

∂x

∂h2

∂p

∂h1

∂p

∂t

∂p

∂h2

∂q

∂h1

∂q

∂t

∂q

∂h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.12)

Adjoint matrix for J({q → Q}) is

J−1({q → Q}) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−det
(

∂T
∂p

∂T
∂q

∂H2

∂p
∂H2

∂q

)
det

(
∂H1

∂p
∂H1

∂q

∂H2

∂p
∂H2

∂q

)
−det

(
∂H1

∂p
∂H1

∂q

∂T
∂p

∂T
∂q

)

−det
(

∂T
∂q

∂T
∂x

∂H2

∂q
∂H2

∂x

)
det

(
∂H1

∂q
∂H1

∂x

∂H2

∂q
∂H2

∂x

)
−det

(
∂H1

∂q
∂H1

∂x

∂T
∂q

∂T
∂x

)

−det
(

∂T
∂x

∂T
∂p

∂H2

∂x
∂H2

∂p

)
det

(
∂H1

∂x
∂H1

∂p

∂H2

∂x
∂H2

∂p

)
−det

(
∂H1

∂x
∂H1

∂p

∂T
∂x

∂T
∂p

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.13)

By equating the matrices (4.12) and (4.13) we get

∂x

∂t
= det

(
∂H1

∂p
∂H1

∂q

∂H2

∂p
∂H2

∂q

)
,

∂p

∂t
= det

(
∂H1

∂q
∂H1

∂x

∂H2

∂q
∂H2

∂x

)
,

∂q

∂t
= det

(
∂H1

∂x
∂H1

∂p

∂H2

∂x
∂H2

∂p

)
(4.14)

Thus, we obtained the Nambu’s equations of motion [6].
With the same way one can define:
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J−1({Q→ q}) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−det
(

∂p
∂t

∂p
∂h2

∂q
∂t

∂q
∂h2

)
det

(
∂x
∂t

∂x
∂h2

∂q
∂t

∂q
∂h2

)
−det

(
∂x
∂t

∂x
∂h2

∂p
∂t

∂p
∂h2

)

−det
(

∂p
∂h1

∂p
∂h2

∂q
∂h1

∂q
∂h2

)
det

(
∂x
∂h1

∂x
∂h2

∂q
∂h1

∂q
∂h2

)
−det

(
∂x
∂h1

∂x
∂h2

∂p
∂h1

∂p
∂h2

)

−det
(

∂p
∂h1

∂p
∂t

∂q
∂h1

∂q
∂t

)
det

(
∂x
∂h1

∂x
∂t

∂q
∂h1

∂q
∂t

)
−det

(
∂x
∂h1

∂x
∂t

∂p
∂h1

∂p
∂t

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and equate this matrix with the Jacobian matrix J({q → Q}). As the result one finds
∂p

∂h2

∂q

∂t
− ∂p

∂t

∂q

∂h2

=
∂H1

∂x

∂q

∂h2

∂x

∂t
− ∂q

∂t

∂x

∂h2
=
∂H1

∂p
(4.15)

∂x

∂h2

∂p

∂t
− ∂x

∂t

∂p

∂h2
=
∂H1

∂q

These equations we can consider as inverse Nambu’s equations.

5 Polylinear Oscillator Model in the Basis of Multicomplex Algebra

Oscillator model is one of the oldest models of the classical mechanics. The solutions of this
model are given by cosine&sine functions. The equations of motion of one dimensional oscillator
may be written in two equivalent forms:
(a) In the matrix form

d

dt

(
x

p

)
=

(
0 1

−1 0

)(
x

p

)
, (5.1)

with the solution
x =

√
2h sin(t), p =

√
2h cos(t).

(b) In the basis of complex algebra

−i d
dt
z = z, z = p+ ix, (5.2)

with the solution
z =

√
2h exp(it),

where the constant of motion h, energy, is defined by

h =
1

2
(x2 + p2) =

1

2
zz̄.

In the Hamiltonian formalism this function plays a role of the Hamiltonian of the system:
h = H(x, p). Hamiltonian form of the Eqs. (5.1) and Eqs. (5.2), correspondingly, are given by

d

dt

(
x

p

)
=

(
0 1

−1 0

)(
∂
∂x
∂
∂p

)
H(x, p), (5.3, a)
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−i d
dt

(
p+ ix

)
=

( ∂

∂p
+ i

∂

∂x

)
H(x, p). (5.3, b)

In the connection of complex form of equations of motion note F.Strocchi [13] gave the
formulation of Schrodinger equation as Hamiltonian equations in complex coordinates where
Hamiltonian function is the mean value of the corresponding quantum operator.

In this section we build one example of dynamical equations of motion inD ≥ 3- dimensional
phase space, we denominate polylinear oscillator model. This model is direct extension of
the ordinary oscillator model in two-dimensional phase space. The solutions of the latter
are given by the tri-gonometric functions or by the complex algebra. Correspondingly, the
solutions of the polylinear oscillator model are given by the multicomplex algebra or by
poly-gonometric functions. We show, the polylinear oscillator model is oscillator model for the
Nambu’s formulation of generalized Hamiltonian dynamics.

Thus, we are looking for equations for a new oscillator model the solutions of which are
given by the polygonometric functions:

qi = (nh)
1
nmusi(ϕ), qi = (nh)

n−1
n musi(−ϕ), i = 1, ..., n, (5.4)

where h = 1
n
|z|n is the "energy" of the polylinear oscillator model. The polygonometric

functions depend of (n − 1)-angle. Complement this set of variables with the variable ϕn = h
to get the set of n variables: {ϕ1, . . . , ϕn}. Differentiating qi, qi with respect to h we obtain

dql

dϕn

=
n− 1

nh
ql,

dql
dϕn

=
1

nh
ql. (5.5)

Let us consider two set of independent coordinates: {q1, q2, . . . , qn} and {ϕ1, . . . , ϕn−1, ϕn}.
The Jacobian of the mapping

{q1, q2, . . . , qn} → {ϕ1, . . . , ϕn−1, ϕn}

is equal to one:

det
( ∂ql
∂ϕk

)
=

1

nh
det

(∑
l

(Ej)l
iql

)
= 1. (5.6)

Let us evaluate the following derivatives:
∂ϕk

∂ql
,
∂ϕk

∂ql
. One may find these values by

using the formulae (2.21,a,b) (5.6) and (5.7). By differentiating the set of functions
ϕk = ϕk(q

1, q2, . . . , qn), (k = 1, . . . , n) with respect to the variables ϕl, (l = 1, . . . , n) one
obtains the linear system of the algebraic equations:

δki =
∂ϕk

∂ql
(Ei)l

rq
r, δki = −∂ϕk

∂ql
(Ei)r

l qr, k, i = 1, 2, ..., n− 1, (5.7, a)

δkn =
n− 1

nh

∂ϕk

∂ql
ql, δkn =

1

nh

∂ϕk

∂ql
ql, k = 1, 2, ..., n. (5.7, b)

The solutions of Eqs.(5.7,a,b) with respect to
∂ϕk

∂ql
,
∂ϕk

∂ql
are given by

∂ϕk

∂ql
=

1

nh
(E−k)p

l qp,
∂ϕk

∂ql
= − 1

nh
(E−k)l

pq
p. (5.8, a)

ql = (n− 1)
∂ϕn

∂ql
, ql =

∂ϕn

∂ql
. (5.8, b)
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Equations (5.8,a,b) one may consider as the extension of the oscillator equations of motion with
the first integral of motion given by

H =
1

n
|z|n. (5.9)

The function h = H(z) we choose as Hamiltonian of the system. By substituting (5.8,b) into
right side of (2.21,b) we obtain next evolution equations for the coordinates qi and qi with
respect to the evolution parameters ϕk, k = 1, ..., n− 1:

∂qi
∂ϕk

= (n− 1)(Ek)
l

i

∂H

∂ql
, (5.10, a)

∂qi

∂ϕk
= −(Ek)

i

l

∂H

∂ql
. (5.10, b)

Obviously, for n = 2 this system of equations is reduced to the Hamiltonian equations (5.4,a).
As far as we consider H as the Hamiltonian of the conservative system, in general, the following
conditions should be satisfied

dH

dϕk
= 0, k = 1, ..., n− 1. (5.11)

By using Eqs.(2.21,b), (5.8,b) we get

dH

dϕk
=

∂ql
∂ϕk

∂H

∂ql
+
∂ql

∂ϕk

∂H

∂ql
= (n− 1)(Ek)

l

i

∂H

∂ql

∂H

∂qi
− (Ek)

i

l

∂H

∂ql

∂H

∂qi
=

= (n− 2)(Ek)
i

l

∂H

∂ql

∂H

∂qi
= 0. (5.12)

Thus the condition (5.12) is satisfied automatically for n = 2 case. This is the case of ordinary
oscillator model. For n ≥ 3 the condition (5.8) will be satisfied if the derivatives

Dm =
∂H

∂qm
, Dm =

∂H

∂qm

are related similar co- and contra- variant coordinates qi, qi according to our definition of the
polylinear metrics given in Sec.2. It easily seen, in the case of polylinear oscillator model this
condition is fulfilled because (5.8,b). In the general case the following relations between Dm

and Dm hold
Di = ληii1···in−1Di1 · · ·Din−1 , (5.13)

where λ for the polylinear oscillator is given by

λ = (n− 1)(n−1).

By substituting (5.13) into Eqs.(5.10,b) we obtain

∂qi

∂ϕk

= −λ(Ek)
i

lη
li1···in−1

∂H

∂qi1
. . .

∂H

∂qin−1
. (5.14)

These equations are given in the terms of the contra-variant coordinates.

Theorem 3 (§5)
If the dynamical variables qi of the system are coordinates of multi-oscillator

model then they satisfy to the following system of equations:

εii1...in−1
∂qi1
∂ϕ1

∂qi2
∂ϕ2

∂qin−1

∂ϕn−1
=
∂H

∂qi
. (5.15)
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To prove it is sufficient to transform (5.10,a) into (5.15). From Eqs.(5.10,a) we obtain the
following system of equations

∂H

∂qlk
=

1

n− 1
(E−k)

i

lk

∂qi
∂ϕk

, k = 1, . . . , n− 1; lk = 1, . . . , n. (5.16)

By substitute these relations into the right side of (5.13) and taking into account the formulas
(2.22) we get

∂H

∂qi
= ηii1···in−1(E−1)

l1
i1

∂ql1
∂ϕ1

. . . (E−(n−1))
ln−1

in−1

∂qln−1

∂ϕn−1

= εii1...in−1

∂qi1
∂ϕ1

∂qi2
∂ϕ2

∂qin−1

∂ϕn−1

.

♦
Thus we obtained Inverse Nambu’s Equations.
Similar the case of two-dimensional oscillator model we can elaborate inverse polylinear

oscillator equations. Combining (5.8,a) with (5.5) we can write

∂ϕk

∂qi
=

1

n− 1
(E−k)

i

l

dql

dϕn

, (5.17, a)

∂ϕk

∂qi
= −(E−k)

l

i

dql
dϕn

. (5.17, b)

Now let us rewrite the set of equations (5.17,a,b) in the following form

dql

dt
= −(n− 1)(Ek)

l

i

∂Hk

∂qi
,

dql
dt

= (Ek)
i

l

∂Hk

∂qi
, k = 1, . . . , n− 1, (5.18)

where we denoted Hk = ϕk, t = ϕn. The condition
dHk

dt
= 0 is fulfilled if

1

n− 1
(Ek)

j

i

dqj
dt

dqi

dt
= 0,

from which we obtain
dql
dt

=
1

λ
ηli1···in−1

dqi1

dt
· · · dq

in−1

dt
. (5.19)

The equations (5.18) one may consider as inversion of the system (5.10,a,b). This formulation
consists of (n − 1)- Hamiltonian H1 = ϕ1, H2 = ϕ2, . . . , Hn = ϕn−1 and only one time-like
parameter, t = ϕn.

The relation of obtained system equations with Nambu equations is given by following

Theorem 4 (§5)
The solutions of the equations (5.18)–(5.19) satisfy to the following system of

Nambu’s equations

εli1...in−1

∂H1

∂qi1

∂H2

∂qi2
· · · ∂Hn−1

∂qin−1

=
dql
dt
. (5.20)

Proof
Let us form the following expression

Detl(H1, ..., Hn−1) = εli1···in−1

∂H1

∂qi1

∂H2

∂qi2
· · · ∂Hn−1

∂qin−1

. (5.21)
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By using Eqs.(5.18) we get

Detl(H1, ..., Hn−1) =
1

(n− 1)n−1
εli1···in−1(E

1)i1
l1
. . . (En−1)

in−1
ln−1

dql1

dt
· · · dq

ln−1

dt
. (5.22)

Now taking into account the formula (2.22) we can transform (5.22) as

Detl(H1, ..., Hn−1) = ηli1···in−1

dqi1

dt
· · · dq

in−1

dt
.

The latter just equal to dql

dt
because (5.19). Thus we obtain (5.20) which coincides with the well

known Nambu’s system of equations. ♦

Conclusion

Summarizing we come to the following conclusions.
The many particle system is described by 2n-dimensional phase space coordinates. The

solutions of the equations of motion are defined by 2n constants of integration or equal,
constants of motion. The other form of the constants of motion one may represent via 2n
Poincaré integrals. Let us consider even set of Poincaré integrals: P2, P4, ..., P2n. We have two
possibilities.

1. The particles of the system obey to form-invariance principle of P2 (Theorem 1(§3)).
Then the motion of the particles is described by Hamiltonian equations.

2. The particles of the system obey to form-invariance principle of P2n (Theorem 2(§4)).
Then the motion of the particles is described by Hamilton-Nambu equations.

Let us note, P2 is the square in two-dimensional phase space while P2n is the volume in
D = 2n-dimensional phase space. This fact prompts us an idea to use the algebras based
on the polylinear forms. The pseudo-norm of the multicomplex algebra exactly is defined by
D-dimensional volume (see, (2.22)). Thus, it occur, the multicomplex algebra is related with
Hamilton-Nambu equations similar the complex algebra is related with Hamilton equations.
On the other hand, we can use multicomplex algebra as "key thread" to generalize Haniltonian
equations of motion. In this way, we have constructed the oscillator model for the Hamilton-
Nambu dynamical equations. We have found the dynamical equations in D ≥ 2- dimensional
phase space with (D − 1)-evolution parameters and single Hamiltonian. The oscillator model
in a such dynamics is generated by the Hamiltonian defined by D-degree homogeneous form.
The solutions are represented by the set of polygonometric functions depending of (D − 1)
angle. We have shown, these equations can be inverted. As the result we have obtained the
dynamical equations in D- dimensional phase space with an single evolution parameter and
(D − 1) Hamiltonian.
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ДИНАМИКА В ФАЗОВОМ ПРОСТРАНСТВЕ ПОРЯДКА D ≥ 2

В БАЗИСЕ АЛГЕБРЫ МУЛЬТИКОМПЛЕКСНЫХ ЧИСЕЛ

Р.М. Ямалеев

Национальный Автономный университет Мексики, Мехико, Мексика,
Объединенный университет ядерных исследований, Дубна

iamaleev@servidor.unam.mx

Мы используем коммутативную алгебру мультикомплексных чисел, чтобы построить модель
осциллятора для динамики Гамильтона-Намбу. Мы предлагаем новый динамический принцип, из
которого вытекают два вида уравнений Гамильтона-Намбу в D ≥ 2- мерном фазовом простран-
стве. Первый формулируется с (D − 1)-параметром эволюции и единственным гамильтонианом.
Гамильтониан модели осциллятора в такой динамике задается однородной формой степени D.
Во второй формулировке, наоборот, эволюция системы вдоль единственного параметра эволюции
генерируется (D− 1)- гамильтонианом. Последний задается уравнениями Намбу в D ≥ 3-мерном
фазовом пространстве.
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