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As a continuation of the ideas in [1], we determine a new solution for Einstein equations in
vacuum for linearly approximable anisotropic perturbations of flat Minkowski and Berwald-Moor
Finslerian metric. Also, we determine the effective expressions for geodesics and eikonal for small
anisotropic perturbations of Minkowski and Berwald-Moor metrics and the changes of the OMPR
conditions for the two models. This could in principle provide the possibility to study the anisotropic
properties of space-time in our galaxy.

1 Introduction

This paper is the continuation of [1] in which the motivation and the physical background
of this research were given in detail. To remind it briefly, we should mention the following.
The astrophysical data collected during the last decade contradicts the GRT expectations for
several specific cases and demands to modify the expression for the Einstein-Hilbert action
which is the base for the popular cosmological models. Several such attempts appeared to
be unsatisfactory for various reasons, and in [1] the modification accounting for the possible
anisotropy of space-time was suggested. The consequences of such suggestion are meaningful,
therefore, there must be an experimental test able to show if this idea could be applied to the
physical world. The corresponding effect is the optic-metrical parametric resonance (OMPR)
exploiting the metrical properties of space-time, particularly, the existence and properties
of the gravitational waves. The theory of OMPR can be found in [2], [3], [4], [5], the first
experimental evidence of its existence are given in [6].

The goal of [1] was to adjust the ideas underlying the theory of the OMPR effect to
the case when the geometry used for the description of the space-time is not Riemannian
but the Finslerian one. This included the modifications of the Einstein equations, of the
eikonal equation and of the geodesic equations. In order to do this the needed mathematical
formalism was introduced, and the Einstein equations in vacuum, [7], for the linearized h-v
model

G = (γij(y) + εij(x, y))dxi ⊗ dxj + vab(x, y)δya ⊗ δyb

(where γij = γij(y) is a locally Minkowski metric, εij = εij(x, y) and vab = vab(x, y) are small
anisotropic perturbations), became:





Rij − 1

2
Rγij =

1

2
S(γij + εij)

(δi
sδ

l
j − γilγsj)Γ

s
li·b = 0

Sab − 1

2
(r + S)vab = 0

. (1)

Here, Γi
jk are the usual Christoffel symbols for gij = γij + εij, Rij is the corresponding

Ricci tensor, and Sab is the Ricci tensor corresponding to the ”vertical” part vab of the metric
structure G.
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We ascertained that they preserve the form of the wave equation ¤εij = 0 for the direction
dependent metric, while the solution εjh = Re(ajh(y)eikm(y)xm

) appeared to be expectedly
different from the regular plane wave even for the simplest case: its amplitude, ajh(y), and
wave vector, km(y), were no longer isotropic and depended on each other. In [1] there was
proposed a generalized eikonal equation. Here we use the simpler and more natural variant

gijkikj = 0. (2)

where ki =
∂ψ

∂xi
. By a similar approach to the Riemannian case, the eikonal appears to be

ψ = ki(y)xi + hÃ(y) sin
(
Kix

i
)
, γijkikj = 0, ki = ki(y) (3)

where Ã = Ã(y) is expressed in terms of the wave vectors (ki) and (Ki) of the gravitational

and of the electromagnetic waves as Ã(y) =
1

2

ãijk
ikj

Kiki
=

1

2

ãijkikj

γijKikj

. The generalized geodesic

equation took the form

g∗ij
dyj

dt
+ γi00 +

1

2
εhl·i,jyhylyj = 0, (4)

where γi00 = γijky
jyk; g∗ij =

1

2

∂F 2

∂yi∂yj
is the (usual) Finsler metric generated by the

Finslerian function F 2 = (γij(y) + εij(x, y))yiyj and the third term originated from the
anisotropic deformation of the metric.

It should be noticed that this equation has a physical meaning. For the locally
Minkowskian space with small anisotropic deformation, the force potentials consist of two
terms. The second term in brackets, originating from the anisotropy of the deformation, is
associated with the velocity and provides an analogue to the second term in the expression
for the Lorentz force in electrodynamics. This illustrates the ideas formulated in the end
of [3], [4] and developed in [8], [9].

In this paper we obtain the solutions of these equations for the flat Minkowski and
Berwald-Moor metrics as unperturbed ones and use them for the calculation of the OMPR
effect in Finsler case.

2 Weak anisotropic perturbation of the flat Minkowski metric

2.1 Solution

Let the initial (undeformed) metric be the flat Minkowskian one γ = diag(1,−1,−1,−1).
Then the conditions on the wave solution lead to the system





γhlkhkl = 0

ai
jki =

1

2
ai

ikj

∂

∂yb

(
1

2
ai

ikj sin(kmxm)

)
=

0

Ci
lb{2al

jki − al
ikj} sin(kmxm).

(5)

obtained in [1] which is identically satisfied by

gij =




1 0 0 0

0 −1 0 0

0 0 −1 + hã(y) cos
(D

c
(x1 − x2)

)
0

0 0 0 −1− hã(y) cos
(D

c
(x1 − x2)

)




. (6)
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Here ã(y) is an arbitrary scalar 0-homogeneous function, and h ∈ R is a constant, small
enough such that h2 ' 0. When a(y) := hã(y) is a constant, this metric reduces to the
perturbed Minkowski metric for the isotropic empty space.

In other words, the obtained perturbation is

ε33 = hã(y) cos
(D

c
(x1 − x2)

)
, ε44 = −hã(y) cos

(D

c
(x1 − x2)

)
,

εij = 0, for all other (i, j).

2.2 Eikonal

For the above perturbation of the Minkowski metric, we get Ã =
1

2

ãijkikj

γijKikj

=

1

2

c2ã(yi)(k2
3 − k2

4)

D(ck2 − ω)
, and the eikonal (3) takes the form

ψ = −ω

c
x1 + k2x

2 + k3x
3 + k4x

4 +
h

2

c2ã(yi)(k2
3 − k2

4)

D(ck2 − ω)
sin

(
Kix

i
)
, (7)

Example: Let v ∈ X (M) be an arbitrary vector field on M = R4 and ã =
Kiy

i

γijviyj
, where

K is the wave vector. As the ratio of two invariant quantities under coordinate changes, ã is
globally defined.

In the particular local frame in which K1 = D
c
, K2 = −D

c
, K3 = 0, K4 = 0 (which is,

chosen such that the GW propagates antiparallel to the Ox axis), we get ã =
D
c
(y1 − y2)

γijviyj
.

More particularly, if in the given frame, vi = 0, i = 1, 2, 3 and v4 = −D
c
, then we get

ã =
y1 − y2

y4

hence,

ψ = −ω

c
x1 + k2x

2 + k3x
3 + k4x

4 +
h

2

c2(y1 − y2)(k2
3 − k2

4)

Dy4(ck2 − ω)
sin

(
Kix

i
)

(8)

2.3 Geodesics

If εij(x, y) = hãij(y) cos(Km(y)xm), then, performing the derivations, we obtain the
geodesic equations:

dyi

ds
+ hAi(y) sin(Kmxm) + hBi

p(y)xp cos(Kmxm) = 0 (9)

where the coefficients

Ai = −1

2
γitylys[yj ∂(Kj ãsl)

∂yt
+ (Ksãtl + Klãts −Ktãls)]. (10)

Bi
p = −1

2
γitylysyjKj ãsl

∂Kp

∂yt
= −1

2
γitK0ã00

∂Kp

∂yt
.

depend only on the directional variables yi. Here ã00 ≡ ãnmynym and K0 ≡ Kiy
i. In

particular, if Ki are constant, then Bi
p = 0, i = 1÷4 and the equations of geodesics simplify.
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Solving 9, one can find that unit-speed geodesics of the perturbed metric gij(x, y) =
γij(x, y) + hãij(y) cos(Km(y)xm) are described by

xi(s) = αis + βi − h

2
γit ∂

∂yt

(
ã00

K0

)
sin(Kmxm)− hxp

2
γit ã00

K0

∂Kp

∂yt
cos(Kmxm), (11)

where αi and βi depend on the initial conditions. In particular, if Km are constant, geodesics
of the perturbed metric obey

xi(s) = αis + βi − h

2
γit ∂

∂yt

(
ã00

K0

)
sin(Kmxm). (12)

From (11), we get that along geodesics hxi(s) ' h(αis + βi), and hyi(s) = h
dxi

ds
'

hαi. Eq. (12) describes the geodesics in the case of a small anisotropic perturbation of the
Minkowski metric.

Examples: 1) For a = h = const (Riemannian perturbation), that is, ã = 1, we get the
expression obtained in [2].

2) If a = h
y1 − y2

y4
as earlier, we get a =

hα

y4
along geodesics, and, with xi(0) = 0, i = 1, 4

(⇒ β = ν = 0),

x3 = u0
x1 − x2

hα
+ u0

hc

y4D
sin(

D

c
(x1 − x2)). (13)

Then the Oy-component of the atom velocity will contain a term proportional to

y3 ∼ u2
0

hα

y4
cos(

D

c
(x1 − x2))

and the amplitude factor in front of the cosine depends on the velocity component, y4,
orthogonal to Ox and Oy axes.

3 Weak perturbation of the anisotropic Berwald-Moor metric

3.1 Solution

Instead of the anisotropic correction to the isotropic (Minkowski) metric, we could try
an originally anisotropic but still locally Minkowskian (i.e. spatial variables independent)

metric on R4. Let us consider the Finslerian Berwald-Moor metric γij(y) =
1

2

∂2F 2

∂yi∂yj
, in

which F = 4
√

y1y2y3y4. The explicit form of the unperturbed metric is provided by the
matrices

(γij) =
F 2

8




−1
(y1)2

1
y1y2

1
y1y3

1
y1y4

1
y1y2

−1
(y2)2

1
y2y3

1
y2y4

1
y1y3

1
y2y3

−1
(y3)2

1
y3y4

1
y1y4

1
y2y4

1
y3y4

−1
(y4)2




,
(
γij

)
=

2
F 2




−(y1)2 y1y2 y1y3 y1y4

y1y2 −(y2)2 y2y3 y2y4

y1y3 y2y3 −(y3)2 y3y4

y1y4 y2y4 y3y4 −(y4)2




.

(14)
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The wave solutions εij = aij(y) cos(Kmxm) for Einstein’s equations in vacuum are given

by the solutions of the system (5), where the coefficients,
0

Ci
jd =

1

2
γih ∂γhj

∂yd
will be given by

0

Ci
jd =

p

8

yi

yjyd
, p =





−3

8
, if i = j = d

1

8
, if i = j 6= d or i 6= j = d or i = d 6= j.

−1

8
, if i 6= j 6= d 6= i.

(15)

If we choose the coordinate system such that

K3 = K4 = 0, (16)

then the light-like condition γijKiKj = 0 leads to

K2 =
y1

y2
K1. (17)

Moreover, aij = hλ(y)KiKj (here λ(y) is an arbitrary scalar 0-homogeneous function and h is
a small constant h2 ' 0) defines a solution of (5) obeying the transverse traceless conditions
ai

i = 0, ai
jKi = 0. We get

Proposition 1 The following perturbation defines a solution for the Einstein equations in
vacuum for the Bewald-Moor metric:

εij(x, y) = hλãij cos(K1x
1 + K2x

2), (18)

(ãij) =




K2
1 K1K2 0 0

K1K2 K2
2 0 0

0 0 0 0

0 0 0 0




. (19)

where the first component K1 = K1(y) of the wave vector is an arbitrary 0-homogeneous
function of the directional variables and K2 obeys relation 17.

Let us denote, in some fixed coordinate system:

Ki =
D

yi
, ni =

c

D
Ki, i = 1, ..., 4.

With these, the solution can be written as:

εij = h
λD2

c2
ninj cos(

D

c
(nix

i)). (20)

In the given frame, we have K2 =
D

y2
, n3 = n4 = 0.

Example:
An example which is interesting because of its symmetry, is λD2 = y1y2. Then,

(ãij) = λD2




1

(y1)2

1

y1y2
0 0

1

y1y2

1

(y2)2 0 0

0 0 0 0

0 0 0 0




= h




n1

n2

1 0 0

1
n2

n1

0 0

0 0 0 0

0 0 0 0




; (21)
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and we see that in this case the perturbation, εij, of the metric becomes

εij = h
ninj

n1n2

cos[
D

c
(n1x

1 + n2x
2)], i, j = 1, 2. (22)

3.2 Eikonal equation

With the help of Ã =
1

2

ãijkikj

γijKikj

=
1

2

λ(K iki)
2

Kiki

=
λ(y)

2
Kiki, eq. (2) yields the solution for

the eikonal (3). Rewriting Ã =
λD

2c
nik

i, one obtains the solution for the eikonal as:

ψ = ki(y)xi + h
λD

2c
nik

i sin
[D

c

(
n1x

1 + n2x
2
)]

(23)

Example: for λD2 = y1y2, we get

ψ = ki(y)xi + h
c

2D

(n1k
1 + n2k

2)

n1n2

sin
[D

c

(
n1x

1 + n2x
2
)]

Equation (23) describes the eikonal of the wave propagating in the model anisotropic
space-time with the Berwald-Moor metric perturbed by the GW. In the Berwald-Moor case,
the components ki(y) cannot be constant, since the equation γijkikj = 0 does not have any
constant solutions (except the trivial one ki = 0, i = 1, ..., 4).

3.3 Geodesics

Equations (4), for linearized perturbations of BM metric, lead again to the equivalent
formulation (9), (10) and to the solution (11). In the case under discussion we get K0 =

K1y
1 + K2y

2 = 2D, ã00 = λK2
0 = 4λD2,

ã00

K0

= 2λD, hence unit-speed geodesics (F = 1)

obey

xi(s) = αis + βi − hγij ∂(λD)

∂yj
sin(Kmxm)− hγij ∂Kp

∂yj
xpλD cos(Kmxm). (24)

The simplest solutions are obtained for

D := D(y1, y2);

in this case, performing the calculations, we find s =
K1x

1 + K2x
2

K1α1 + K2α2
. In this case, the cosine

term in (24) vanishes in the expressions of x3 and x4. Calculating the derivative and using
the initial conditions, xi(0) = 0 ⇒ βi = 0, i = 1, 2, 3, we get the Oy-component of the
velocity

y3 = α3 − 4
hλD2y3

F 2
cos(Kmxm). (25)

Example: if λD2 = y1y2, then

y3 = α3 − 4
hF 2

y4
cos(Kmxm)

F 2=1
= α3 − 4h

1

y4
cos(Kmxm) (26)
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4 OMPR modifications

4.1 Flat Minkowski space with weak anisotropic perturbation

The physical interpretation of the obtained solutions leading to the modifications in the
OMPR effect is the following. One can see that the anisotropy does not destroy the solution
of the OMPR equations given in [1]. For a simple anisotropic deformation of the Minkowski
metric, we get the dependence of eqs. (8, 13) on the directional variable orthogonal to Ox
and Oy, i.e. to the plane containing the Earth, the space maser and the GW source. This
plane can belong to the galaxy plane and can be perpendicular to it.

Geodesics describe the trajectory of the particle, and the sample eq. (13) means that the
amplitude of the oscillations of the space maser atom velocity component oriented at the
Earth, y3, depends on y4. This means that when the system ”Earth-space maser-GW source”
is located close to the periphery of the galaxy, the orientation of this system might affect
the OMPR conditions. In our example the OMPR conditions must be modified and take the
form

α2

α1

=
ωh

8Dy4
= bε; b = O(1); ε << 1 (27)

kv1

α1

=
ωhc

α1y4
= κε; κ = O(1); ε << 1 (28)

that illustrates the qualitative analysis given in [4]. This means that the experimental
investigation of the astrophysical systems with various orientations might provide the
information on the quantitative characteristics of the geometrical anisotropy (if any) of our
galaxy.

4.2 Anisotropic space with Berwald-Moor metric and weak perturbation

As in the previous case, the anisotropy does not destroy the OMPR effect itself, but
now the modifications are more pronounced. Eq.(23) for the eikonal also gives a trichromatic
EMW, but the amplitudes of the sidebands and their frequencies are now different from
the isotropic case. The geodesics in the form (25) shows that the amplitude of the atomic
oscillations is now also different. All this would affect the OMPR conditions and they would
be modified in the following way

α2

α1

= h
λD

4c
nik

i = bε; b = O(1); ε ¿ 1 (29)

4h
ω

α1

λD2

c2

√
n1n2n4

n3

= κε; κ = O(1); ε ¿ 1 (30)

(ω − Ω + kv0)
2 + 4α2

1 = D2n2
1 + O(ε) ⇒ Dn1 ∼ 2α1 (31)

or, for the sample example, λD2 = y1y2,

α2

α1

= h
c

4D

(n1k
1 + n2k

2)

n1n2

= bε; b = O(1); ε ¿ 1 (32)

4h
ω

α1

√
n4

n1n2n3

= κε; κ = O(1); ε ¿ 1 (33)

(ω − Ω + kv0)
2 + 4α2

1 = D2n2
1 + O(ε) ⇒ Dn1 ∼ 2α1 (34)

As in the previous Section, we find that the orientation of the system would affect the
observations. Calculating the left hand sides of the second condition in (32) for the systems
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belonging and perpendicular to the galactic plane, one can see that their ratio is equal to
the ratio of the star velocity corresponding to the galactic rotation and the star velocity in
the direction of the galaxy axis. Therefore, if we take two equivalent astrophysical systems
that initially suffice the OMPR conditions and differ only by their orientation with regard
to the galactic plane, only one of them will produce an observable OMPR signal.

5 Discussion

The main results obtained in this paper are the following. In search for the modifications
of the Einstein-Hilbert action due to the anisotropy of the space-time, we have constructed
two simple models of the anisotropic space-time with metrics containing small perturbations.
The additional terms lead to a change of the OMPR conditions in the anisotropic space-time.
It turned out that the orientation of the astrophysical system (taking part in the OMPR)
with regard to the galactic plane causes changes in the observable effect, thus, giving one
the possibility to experimentally investigate the space-time geometrical properties on the
galactic scale.

The expression for the ”simplest scalar” which can be used in the variation principle
based on the Einstein-Hilbert expression for the action was particularized for our model. If
the perturbed locally Minkowskian metric can be presented as gij(x, y) = γij(y) + εij(x, y),
then the space-time anisotropy produces additional terms to the usual Ricci tensor R jk

which is to be calculated with regard to Γi
jk equal to

Γi
jk =

1

2
γil(

∂εlj

∂xk
+

∂εlk

∂xj
− ∂εjk

∂xl
) = −1

2
γil(aljKk + alkKj − ajkKl) sin(Kmxm), (35)
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