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1 Introduction

In the paper, we apply Miron’s theory of Einstein equations on general metric spaces, for
h-v models provided by the homogenous prolongation of a Finsler metric. In this context,
we show that Einstein’s equations in vacuum are satisfied by the homogeneous prolongation
of the Berwald-Moor Finslerian metric tensor.

We also investigate the homogeneous lift of conformally deformed Berwald-Moor metrics.

In Sections 2 and 3, we present the mathematical formalism of h-v metrics, [8], [9], which
lies at the base of a theory of gravitational and electromagnetic fields in Finsler spaces.

Finslerian metric tensors g(x,y) on a manifold M, by their dependence on directional
variables, actually live on the tangent bundle 7'M of the respective manifold. Once M is a
Finsler manifold, then the Finslerian metric tensor endows T'M with a Riemannian structure
(which is called a lift or prolongation of the original Finslerian one on M), and the specific
instruments of Riemannian geometry can be applied on T'M. This idea, applied to Einstein
equations, lies at the base of Miron’s formalism, which extends classical Einstein equations,
and which is presented in Section 4.

In Finsler spaces, the tangent space T,,M at a point zy € M is itself a Riemannian
manifold, and, generally, it is curved. The geometry of the fibre T, M influences on the
energy-momentum tensor, and this influence is pointed out by Einstein’s equations on T'M.

Section 5 is devoted to the homogeneous prolongation (or lift) of a Finsler metric, which
was also introduced by R. Miron. Homogeneity and homogeneous prolongations are needed
in a theory of geodesics and Jacobi fields on T'M, in order to ensure the independence of
the distance Lagrangian to (at least a group of) reparametrizations.

In Section 6, we apply the above theories for the 4-dimensional Berwald-Moor space;
here, the homogeneous lift provides a much simpler model than the usual Sasaki lift. More
precisely, we show that, if we use the idea of homogeneous prolongation together with
Berwald-Moor metric and a conveniently chosen linear connection, the energy-momentum
tensor on T'M identically vanishes (even though the curvature tensor R on T'M is not
identically zero). As shown in [2], if we used the Sasaki lift instead the homogeneous one,
the vertical Ricci tensor Sy, would no longer vanish.

The last section is devoted to deformations by a conformal factor o(x) of the above
model.
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2 Nonlinear and linear connections on 7'M

Let M be a differentiable manifold of dimension n and class C*, (T'M, w, M), its tangent
bundle and (x?,y*) the coordinates of a point u € TM in a local chart We denote by " ;"

partial (usual) derivation with respect to z* and by "-,", partial derivation with respect to
a

Yy .
Let TM be endowed with a nonlinear (Ehresmann) connection N, [5], [1], [9], and (¢;, 0,)
be the corresponding adapted basis on T'M:

0 0 : 0
5= — _ N L H =L
ox? ' Oy ay°
analogously, let (dz*,dy®) be its dual basis,

Sy = dy” + N%dz".

If the nonlinear connection N is given, then any vector field X € X(TM) is locally
represented as

0 ;0
X =X 4 xWi
ot * oy’
with X @1 X _ distinguished (or d-) vector fields. In the same manner, a 1-form w on

TM can be uniquely written as
W = Wi dx’ + w1 6y,

where w(y;, w1y are distinguished 1-forms.

We adopt the following convention: if no elsewhere specified, indices 1,7, k,... will
denote the quantities corresponding to horizontal geometrical objects, while a, b, ¢ will index
quantities corresponding to the vertical distribution.

A distinguished linear connection (or, simply, a d-connection), [9], [8], is a linear
connection D which preserves by parallelism the distributions generated by the nonlinear
connection N, i.e., the covariant derivative of any horizontal vector field remains horizontal,
while the covariant derivative of any vertical vector field remains vertical. In local
coordinates, a d-connection is characterized by its coefficients (L ks L% Ct.., 04 ), where:

jer
D5k5j = Lijk5i7 D5k8b = Labkaa
Dé')céj = Cijc(si, D@ﬁb = Cabcéa-

We shall denote the local components of the torsion tensor of such a linear connection

% a a i a : 6 6 % 6
T byaTjkzstk, ch,Pkb, Ser S (as in (1, [3], [8): AT(577, =) = Ty,
AT (o 5y \55) = Pl ete. Then:
i i i a ON} Ny i i
T =L~ Ly, Bly=5p— 55 Phe=0Ch
a aNa] a 7 a a a
ij:a—yb—LbjaSbc:Oa be — bc_ch'

With the same convention of notations of indices, the local components of the curvature

are, [1], [5], [8]:

i 5Lijk 5Li h Ti h Ti i a
Ry = 5ol 5xk "+ L Ly — L Ly + O Ry,
oL oL®
Rbakl =k bl + chkLa - chlLack + CabcRckh

ox! oxk
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. (?Lijk ‘ N
szkc = ﬁ—yc - Czjclk‘ + Czij ke
By e = % bc\k+C Pic’
St = ag;j" - aac Zg" + Oty Oy — O O
Sbacd = 8;;;,0 - agyfd Cfbc -C de fer

where | denotes the horizontal covariant derivative associated to D.
The associated Ricci tensors are, [8]:

. 1 2 .
J— 1 _ a _ (] _ a
Rjk—Rjkia ij_ija’ ij_Pjiba SbC_Sbca'

3 h — v metric structures; metrical d-connections
Definition 1. (/8/): An h-v metric on T M is a structure of the form
G = gij(z,y)dz’ @ dz? + vay(, y) 6y @ dy°, (1)
where g;; and vy, are (0,2)-type symmetric nondegenerate tensor fields on M.

Let G be an h-v metric on T'M.
A d-connection D is metrical if DxG(Y,Z) = 0, for any vector fields X,Y, Z on T'M.
The canonical metrical linear connection, (8], is locally given by

c. 1 4(0gn;  Ognk  0gjk
Ly = <5xk+5xj_5xh)
c. 1 ./ 0Up ON¢ ON¢
L bk — + _'U <5xbk - 8ybk Vde — ayck Udb) (2)
c . ag h
7 ih
c v ov v
a ad db dc _ be
e = 2" ((?y oyt (?yd)'

The importance of the above connection is given by:

Theorem 2. ([8]): The set of all distinguished connections compatible to G is given by

Izzjk = LZ]k+ Q th, Cl —CZ + thYhC

L%, = Labk + QpXxt,, CY = Cabc + Q%Xd o

where QN = L(6107 — g,59™), Q% = 50205 — veav™) and X', X%, Y., Y, are arbitrary
d-tensor fields.

In particular, if we want to a priori give the torsion tensors T ijk and S9,, then there

holds

Theorem 3. ([8]): There uniquely exists a d-connection DTU(N) = (L', L%, C*;., C%.)
such that:
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1. D is compatible to G.
2. Labk - Labk’ CZJC - CZJC-
3. The torsion tensors T*; and S%,. of D are a priori given.

(a) This connection is given by (2) and

[

. ‘ 1 .
L'yy= L' + 59”(9rhT}}k — gy, + gkhT};r)

c 1
Cabc == Cabc + §'Uaf(vfdsdbc - 'Udedfc ‘I‘ 'Ucdebf).

We shall use, in the following, the notations

i 1 ir
Tik = 59 (grn T = gin T + ginT",),

_ 1
Tabk‘ = §'Uaf ('deSdbc - 'Udedfc -+ UCdebf)'

4 Einstein equations on T'M

Let T'M be endowed with: a nonlinear connection N, an h-v metric structure G and a
metrical d-connection D with a priori given torsions 7°;, and S¢., as in (3).

Once given an h-v metric G on TM, (T'M,G) becomes a Riemannian manifold of
dimension 2n. One can formally state the Einstein equations on T'M :

1
Ric(D) — 550 (D)G =KT.
In local coordinates, the above relation becomes:

Theorem 4. ([/8/) The FEinstein equations of (T M, G) have the following form:

1
Rij — §(R + S)gzj = FJTZ’]’

1 2
Pai - HTaia Pia = _HTia

1
Sab - §(R + S)vab = HTaba
where Ti;, Tq;i, Tiq and Ty are the local adapted components of the energy momentum tensor.

Comment: in the above equations, the unknowns are not only the components g;;, va
of the metric tensor, but also the coefficients N% and the torsions T, S%,, this is, in the
most general case, one has

nn+ 1) 4+n?+n*tn—1)=n*+n’>+n

unknowns. Once we fix the nonlinear connection NN, their number decreases with n?, this is,
we still have n® + n unknown functions (n = 4 = 68 unknown functions!).
If we also choose T, S%. as being 0, this is, if we work with the canonical d-connection

DT'(N), the remaining unknown functions are only the components of the metric, this is,

n(n+1) "=* 20 unknowns depending both on x and y. If we also establish a link between g;;

and v, the remaining unknown functions are only 10, just as in the classical Riemannian
case. Also, we can work with a given (known) metric and infer nonlinear connections/torsions
out of Einstein equations.

The equations are in number of 4n2, this is, for n = 4, we have 64 equations. Still, in
particular cases, as we shall see, this number can drastically reduce.
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Remark 5. g;;, ve and N appear in the equations with their second order derivatives,
while, for Tijk and S%,., the above system is a PDE system of order one.

The energy conservation law, [§],
divT =0,

in local coordinates takes the following form:
) 1 ) 1
{7 = 5(R+9)d},+ Pla= 0

1 2
{8, — 5(R +8)6%Ha = Py = 0.

5 Einstein equations for the homogeneous prolongation (lift)
of a Finsler metric

The notion of homogeneous lift is defined by R. Miron, [7], for Finsler metrics.

Its usefulness is the following: the use of the homogeneous lift insures the invariance of
the distance Lagrangian [ /G(z,2)dt on TM to reparametrizations of the form ¢ — A,
and consequently, the possibility of building an exponential map on T'M.

Let g define a Finslerian metric tensor on M.

Definition 6. The homogeneous prolongation (lift) of the Finsler metric g to the tangent
bundle T'M 1is the following (h,v)-metric:

Gab(7,Y)

G = gij(x, y)da' © da? + == 522 (2, y)0y" ® 0y, (4)

where

o F?= ||y||2 = gijyiyj, and o > 0 is a constant;
® gab = 040, 9ij;
e (0y*) are computed w.r.t. the canonical nonlinear connection

o _ 9G* a_ L a 9900 k_agook
Ni=gg 97 99 <8yb8xky oxk 6b> (5)

J ay]
Definition 7. The Sasaki lift of the generalized Lagrange metric g to TM 1is
G = gij(z,y)dz' @ da’ + gi;(w,y)dy’ @ oy’ (6)

With respect to the Sasaki lift, let us take into account the Cartan connection CT'(N):

Li, = lgih<5ghj Ognk 59jk>,
ik oxk  bxi dah )’
i L (09 Ognk Ogjk\ 1 ;,00n;
Gy = Lg b 00y _ L nOony
J 2 oyk Oy oyh 27 oyF

Now, having in view the homogeneous prolongation (4), let us consider the canonical
(Cartan) nonlinear connection N determined by the Finslerian fundamental function F', and
the following d-connection MT'(N):
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i = 1 ih<6ghj OGnk B 5gjk>.
ik 2 dxk  dxd dah )’
* 1 5Udb (5vdk 5Ubk
Le = - ad( o >’
bk 2" ok T oab 5l
Cijc _ 1 ihaghj;
27 Oy°
i 1 i (%h- (%hk v ik
C ]k = =0 h( ]j — Jh >
2 oy oy’ y

Remark 8. 1. In the expression of the coefficients L%, we denoted, for simplicity:
Vdk = VdeOps ¢ = 6§lxj.

2. The above connection is a metrical d-connection on T M.

8. Its coefficients L' ;;, and C*;. coincide with those of the Cartan connection.

Moreover, taking into account that, with respect to the canonical nonlinear connection

N we have — =10, i =1,...,4, we get:
ox?

Proposition 9. The coefficients of the canonical metrical d-connection MT(N) are given
by:

L ik = L“bk5?52
Cabc = abc + B abc?
where Lijk and C’ijk are the coefficients of the Cartan connection CT'(N), C%,. = C’ijkébéi ok

jZa"c
and
-1

Babc = 2

(65ye + 02yp — Y Gbe)-

Obviously, Bijk are d-tensors of rank (1,2), and their horizontal covariant derivatives
with respect to MT'(NN) are:

Babc\l = 0’ Babcl e — 5?908 + 5?91)@ - 5:9170- (7)

The torsion tensors of MT'(N) are:

Tijk =0, Rajm ]i'kv ﬁ; = aj-b - Laij abc = 0.
In the following, we shall also use the property, [1], [8]:

P]"Ibyb = Oa Pajbyj =0.

The curvature tensors are:

jiklv Ry = R + B% Ry,

jikm Py = Py + B4 Pl

) * B * * * 7 * * P *
jzbca Sbacd - C’abc-d - Cabd~c + C bcCafd -C bdcade’
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a __ 7 a 5J a __ )
where R,%, _Rj 1107 0y, B, kc_Pj ke

Consequently, the Einstein equations for the homogeneous lift G are:

ag].
1 *
Rij — 5(3 + 8)gi; = KTy

*

Pai = HTaia Pz = _HTia
* 1
Sab - §(R + S)vab = HTaba

*

Po=P", Su=2S2, are computed by

3 a

* *
LR . _ h _ c
where the Ricci tensors: R;; = R,"),, Pui = P,
means of the above.

6 The homogeneous prolongation of the Finslerian Berwald-Moor Metric

Let,again, dim M = 4 and g;; denote the flag Berwald-Moor metric, [2], [3]:

1 aze 4 1,,2,,3,,4
9ij(y) F = Vy'y?y3y?, (8)

= Yoyop
this is,
2,3, 4
Yy yy
_ . 3,4 2y Y2y’
1,3,4
Yy
" . Pyt — " 1,4 ylyP
9ij) = 54 1,2, 4
SF2 yyy
2yt gyt — . L2
Y
Ly2q)3
y2y° ylys gl — y4

Its inverse is given by

- vy vy oyt
(gz‘j):% yiyz —(5/232 vy vyt

vyt vy~ vyt

vyt vt Ryt —(yt)?

The canonical nonlinear connection (5) has vanishing coefficients:

and the homogeneous lift of the above looks this way:
G = gij(y)da’ @ da? + vap(y)dy® @ dy’, (9)

where the vertical part of the metric is

«

- ﬁgijézég, a > 0. (10)

Vab

We should mention the simplicity of vy, since their expressions are rational functions
i

of y".
By using the expressions of g;; and v, in (2), we get
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Proposition 10. 1. The coefficients of the canonical d-connection of the homogeneous lift
of the Berwald-Moor flag metric have the form

Lijk = L%, =0, (11)
(3 L
_ga Zf tL=7=c;
8«@' Yy )1 fiz = et (12)
ie = g yige’ p= 3 if 1=JFcCc or 1#£jJ=c or 1L=cCc%#J;
1 o ,
5 if iFjFcti.

2. The only nonvanishing coefficients C%,. are

1
Cga =

a

. oa=1,..,4. (13)
3. The torsion tensor T has only one nonvanishing component, namely
PZjC - CZ]‘C - Czjc-

By using the above result in order to compute the curvature tensor of the canonical
d-connection, we obtain

Proposition 11. The curvature tensor of the canonical d-connection attached to the
homogeneous prolongation of the Finslerian Berwald-Moor metric has as only nonvanishing
components: o
S;'pe = dx’ (R((?b, 00)5j).
Since S jibc do not appear in the construction of the Ricci tensor on T'M, the Ricci tensors
and Ricci scalars identically vanish.
Thus, we have proven

Proposition 12. The homogeneous prolongation of the Finslerian Berwald-Moor metric,

G = gij(y)dz' @ da’ + va(y)dy* @ dy’, (14)
with ] ]
_ 2 _ 2 4 1,2 3 4
9i5(9) = 5 (F*) 1y» va(y) = 57 (F%) 0pr F' =000’y
is a solution for the Finstein equations in vacuum on the tangent bundle T'M :
1
Rij — 5(R+5)g;; =0
Pu=0, Py=0
1
Sab - E(R + S)'Uab = 0.

Remark 13. By applying a similar procedure, it follows that the homogeneous lift of the
flag BM metric, namely:

G = §ij(y)dz’ @ da? + vy (y) 0y @ 5y°, (15)
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] 1 R j— o PR |
where gw(y) = 12F2W’ F = \ YT YLYCYE Vg = 12F4W’ a > 0, is also a

solution for the Einstein equations in vacuum on T'M.

Remark 14. 1. The above results are obtained by using the canonical nonlinear connection
and the canonical metrical d-connection. By using a different nonlinear connection N,
or a metrical d-connection with torsion, we can also obtain nonvanishing values of the
energy-momentum tensor.

2. If, instead of the homogeneous lift we would have used the Sasaki lift (g,g) of the
Finslerian Berwald-Moor metric, i.e.,

G = gij(y)dxi ® da’ + b (Y)dy* @ dyb, (16)

then, the vertical Ricci tensor Sg, would have not vanished, hence the Sasaki lift of the
BM flag metric (together with the canonical connections N and D) does not give a
solution for Einstein’s equations in vacuum.

7 Homogeneous lifts of metrics conformally related to Berwald-Moor one

Let, for the beginning, (M, F') denote an arbitrary Finsler space. Finsler spaces which
are conformally related to (M, F), in the sense of ( [1]) (angle-preserving), are described by
fundamental functions of the form

. 1
F=e2°@F
where o is a real valued smooth function. ~
. ) ) 1 0?F? _ 1 0*F?
This is, the corresponding metric tensors g¢;; = —=—=— and ¢;; = -=—=— are
2 Oytoyl 2 Oytoy’
related by
Gij = €° gij.-
It follows that the homogenized versions
_ Yab ~ gab
Vap = ﬁ7 Vap = ﬁ

coincide:
Vab = Ugb-

Hence, there holds:

Proposition 15. The homogeneous lift of any conformally deformed Finslerian metric F =

1
e2°@F s given by:

G= " @ g idr’ @ da? 4 %@“ ® 0P, (17)
where g;; is the metric tensor associated to the "undeformed" Finsler function F.

This is, a conformal factor o(z) actually affects only the horizontal part of the metric.

As a remark, if we had used the Sasaki lift instead of the homogeneous one, the vertical
part vy, of the metric would have also been multiplied by e?.

Let now g;; denote the Berwald-Moor Finslerian metric:

182F2 4/011,20,3,,4
F = /yly*ysy*.

" = 2oy
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Then, geodesics of the conformally deformed model (M, F ) are described by

d*z’ Lo
I3 +2G*(x, %) =0,
where 2G'(z,y) = 7' ;,»7y* and
i Lo i, . .
Ve = 597 (Gnik + Gne = Gkn).

By a direct computation, we get:

i

Yk = %(6;07;C + 5,@07]- - gihgjkqh).

Remark 16. With the notations in the previous sections, we have, actually,
’Yijk = A;Za,h,

where Aﬂ depend only on y and o3, only on x.

It follows that ‘ ‘ ‘
2G* = (Qyzyh — gZhF2)0'7h.

Taking into account the form of the BM contravariant metric tensor, we get that
2G" = 2(y") %0y, i=1,...4,
where, in the above, there is no summation over . We have thus proven:

Proposition 17. Geodesics of the conformally deformed Berwald-Moor Finsler space

o(z)
(M,e 2 F) are given by:

i+ 2(iM)%0, = 0, i +2(i%)%0, =0,

P4+ 2(i%) %03 = 0, &'+ 2(i*)%0, =0.
Corollary 18. The only nonvanishing coefficients of the canonical nonlinear connection (5)
given by the conformally deformed Berwald-Moor metric e”("”)gij are

i _ oy _
N =2y'c;, 1=1,..,4
(where, again, there is no summation over 1i).

Then, the coefficients of the canonical connection MT(N) are given by:

4 I 1. ) )
L'y = Labk5;5? = §glh(ghj;k + Ghiest — Gjksh);

;k - Czjk’ abc = abc?
where C’ijk, %. denote the coefficients of the canonical d-connection attached to the
undeformed homogeneous prolongation of the BM metric.

The nonvanishing components of the torsion tensor are R%;, PijC = ("

a
P]b'

jer
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The curvature components which appear in the expressions of the Ricci tensors are:

i 5Eijk ‘ii Th Ti Th 11 i a
R’y = Se 5xk '+ L kL m— Ly + C 5 R,
) ail]k 7 J
ijc: ayc C]c\k+0]bpkc7 Pb kc_P kc 25 +B dec7

Sp'ea =0 = She=0.

We notice the following properties:

Li . = 20-’7;, CZ - 0, Babdpdka - 0

ji ic

This is, the mixed Ricci tensors are:

P, = Cm +CZJ,,PZC,
ch — L +Ca

cj-a ]a?

where E“ = 5“5thj, @ = §80nCh

C

Hence, from the Einstein equations on 7'M, for the conformally deformed model (M, é)
there remain:

1
Ri; — _Rgij = rTy;
C jeli + CZ]bP = Taiu L + Ca = —KTm,

cj-a

—Rva = kT,p.
5 {Wab b
In vacuum, from T = 0, we get R = 0. By replacing into the above equations, we get:

Proposition 19. The FEinstein equations in vacuum for the conformally deformed model

(M,G) are:

Rij — 0

) _ % b
?jc\i - C ij ic
Lacj-a = _Cacdpd

The first set of equations above involves second order derivatives of ¢, while the last two
of them are PDE’s of order 1, linear in ¢ = o(x).
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