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As an application of the results of the first author obtained in the papers [1] and [2], the
geometry of the second order tangent bundle T2M (or second order jet bundle JgM ) endowed
with two special types of metrics compatible with the 2-contact structures is studied. The
particularity of these two models is that the horizontal and the v()- part of the metric are

both given by the same Riemannian metric (respectively, its horizontal part is Riemannian),

2)

while its v(®)-part is given by the flag-Finsler Berwald-Moor metric (respectively, the v and

v?)- parts are given by the flag-Finsler Berwald-Moor metric, [5]).

MSC 2000: 53C60, 58B20, 70G45.

1 The 2-Tangent Bundle T?M

Let M be a real 4-dimensional manifold of class C*°, (T?M, 7%, M) its second order

tangent bundle, [1], and let T2M be the space T?M without its null section. For a point
u € T?M, let (2%, y™M? 43 be its coordinates in a local chart.

Let N be a nonlinear connection, [3], [8]- [13], and denote its coefficients by (]}7 : J;f ;) )

1, 7=1,...,4. Then, N determines the direct decomposition
T, T*M = No(u) ® Ni(u) @ Va(u), Yu € T>M. (1)

The adapted basis to (1) is (&;, 614, d2;) and its dual basis is (da?, 5y(V?, §y@?), where

(50 _ 9 9 e 9
T xt o Ox 1ty 20 gy
5 d . 0
0 = Sy — gyi — T gy@k (2)
0 .

respectively,
Sy = dyW 4 ]\{ffcdxk

0y = dy®" + MidyV* + Mida*,
where J\l/[ : ]\2/[ ¢ are the dual coefficients of the nonlinear connection N
Then, a vector field X € X (T?M) is represented in the local adapted basis as

X = X5, 4 xWig, + x@ig,, (4)
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with the three right terms (called d-vector fields) belonging to the distributions N, N;
and V5 respectively.
A 1-form w € X* (T?M) will be decomposed as

w= w 0 gt + w( )5y(1)i + wf)éy(g)i.

Similarly, a tensor field T' € T (T?M) can be split with respect to (1) into components,
which will be called d-tensor fields.

2 N-linear connections. d-tensors of curvature

An N-linear connection D, [1], [2], is a linear connection on T>M, which preserves by
parallelism the distributions N, N; and V5.
An N-linear connection is locally given by its coefficients

L' Ll Ly, Oy, O

DI (N i
(V) = ((om (10) 7% 20) 7*7 01y 7F7 (11) IF7 (%”‘“ (g’;ﬂ’“ (gﬂ’“ (gﬂ’“) (5)

where

k

Ds 6; = L. 05, D561, = L, 01, Ds 0o = L, 0o
oY (00)]k 9 0 Y15 (10)]k 1é» 6, Y25 (20)]k 24

D(Slk(s]‘ = (g)zjkéza D51k51j - (g)ljk(slia D51k52j - (g)ZJkCSQZ . (6)

Day05 = & 'adis Doy0rj = Clypdri, Doy 02y = Ll

\

The curvature of the N-linear connection D,
R(X,Y)Z = DxDyZ — DyDxZ — DixyZ,

is completely determined by its components (which are d-tensors) R (8, 0gx) doj- Namely,
the 2-forms of curvature of an N- linear connection are, 1], [2],

, 1

+(P)J ida® A Gyt +3 S ]kl5y(1)k A Sy 4 (7)

+(QW (DF A 5y + S]kléy B Gyt
2

a = 0,1,2, where the coefficients R %, P ', Q.. S . are d-tensors, named the
(00)! j j )’

(Ba) ™ (2q)
d-tensors of curvature of the N-linear connection D.

3 Metric structures on T?M

A Riemannian metric on T>M is a tensor field G of type (0, 2), which is nondegenerate
in each u € T?M and positively defined on T?M.
In this paper, we shall consider only metrics in the form

G = gyde' @dr? + g;0yV" @6y + g6y @ 5y @7, (8)
(0) (1) (2
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where ¢;; = ¢4(z, yW y@): this is, such that the distributions N, N; and V5, generated
(@) (o
by the nonlinear connection N be orthogonal in pairs with respect to G.
Let also

F = /yMiy()2y )3y (1)4

be the Berwald-Moor Finsler function, [14]- [16], and the generalized Lagrange metrics
on M, given by
o L OF 5 1 OF 9
Y 12F4 Oyioyi’ Y 12F6 Oyioyd )
(h defined above is the same as the one in [5], with the only difference that here we have
divided by F* or F'® instead of F'2, in order that the obtained tensors be homogeneous of
degree -2, respectively, -4).

In the following, we shall use two particular kinds of metrics on m, namely:

1. gij= 94 = gij(x>7 gij = hij(y(l))a
(0) 1) (2

2. gij=0ij(x), 9= gy =hij(yY),
(0) 1) (2)

gij(z) being a Riemannian metric on M, and h;j, E-j as above.

These two examples have an important property, namely, they are compatible to the
almost contact structures F introduced in [1].

An N-linear connection D is called metrical if DxG = 0, VX € X(T?M). The local
expression of this equality is given in [1].

4 The Ricci tensor Ric (D)

If we consider the Ricci tensor Ric (D), as the trace of the linear operator
Ve R(V,X)Y, YV = Vi + vig, + Vs, € X (T*°M), (10)

then, [3], the Ricci tensor Ric (D) has the following components:

Ric (D) (i, 54) = R!., =Ry

ozl oxt (00)
fie®) (5y((51”’5ii) = —hyu = 7%)”;
Ric(D) <5y(<52”’5ii) = i = _é%)”;
Fie(D) (%’@fm‘) = By = i)”;
Ric(D) <5y((51)j’ 5y5(1)i) - (ﬁ)i gl =" (‘%ij;
fie®) (5;(52”’5;(5”@) - —(21)2 v _éfj;
fie®) (%’5;(2”) = By = (2]1;”;
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, 5 6 l
RZC(D) (W’W) = ijl = QZ])

(22) (22)
, 5 6 l
e 0) (g g ) = i =

5 Canonical structures

Let (M, g) be a Riemannian manifold and T2 M, its second order tangent bundle. The
canonical nonlinear connection N is defined (cf. with R. Miron and Gh. Atanasiu, [13])
by its dual coefficients

My =~y MY C (viey™*) + MM 11
(1)] PY_]ky ) (2) 2 (ijy ) + ) (1) ( )
. 4 . 0
i A : : _ 1)7 1
Yjr. = Vjx () being the Christoffel symbols of g and C = yM) o ) Gy
Let
N = M’ N%= M+ M, M"
w’ m’ @’ (2 HMOK
be its (direct) coefficients. Then, the coefficients of the Lie brackets, [1],
Soj, 0ok] = R 01+ R 5pai, [00s, 016 = B %61+ B0
(005> Oo] o101 +(02)]k 26, [00j, O1k] 1101 +(12)]k 2
(00, o] B i+ B 50 (015, O] L 10 (12)
015, 02k] = (§)§k5gi, [0, 021] = 0
have the property that
(E)Z]k _(B)]'“ _%k’(B)ij :(E)ij :(g)zjkzo' (13)

In this paper, we shall use the metrical N-linear connection introduced by the first
author, [1], given by the coefficients:

1 .
L’ :—gll(5kg'z+591k 019 jk)
" 20 o (0) ©’

. 4 1 .
Lt = Bt . 4+-g"6sg:3— B™ gmu— B™q:m
(60)]k (6ﬂ)k] 2(Z> ( k(g)ﬂ (88 )k](g) L (88 )kl(g)J )

o= =g g, (6=0,2), 14
Shm = g9 o g ( ) (14)
1 ..
Ct = =g%h g4, (6=0,1),
(e2)7F 2(‘(3) 2k(g)ﬂ ( )
1

Go= 59" Om g+ S5 g — O gn), O = B,
(M)jk 2(% (ﬂk(g)]l ﬁj(g)lk ﬁz(g)jk) 2 2

where =1, 2.

Then, we have to remark that, taking into account the relations (13), two of the
coefficients of the torsion tensor vanish, namely

pi = St = 1
(21)7* (%’“ 0 (15)

where (5);k512 = UlT((sgk, 5j)7 (g);kagz = ng(élk, (51]‘).
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6 The case of the g — h — h-metric

Let the metric structure of T2M be given by
G = gij(x)dxi ® dr? + hz’j(y(l)) Sy’ @ 6y 4 hl-j(y(l))éy@)" ® oy

where ¢ is a Riemannian metric on M and h is as in (9). Then, G is h-Riemannian and
v1-, vo-locally Minkovski. In this case, the detailed expressions of the coefficients DI'(IV)
of the canonical N-linear connection and of its curvatures and torsions are given in [1].

By applying the results in the cited paper and the relation (15), we obtain by a direct
computation the following result:

Proposition 1. The only nonvanishing components of the Ricci tensor Ric(D) of the
canonical -linear conenction are

, 5 6 i
(D) (5 ) = it =

| 56 ) |
Ric (D) (@a 5y(1)l> - (ﬁ)z gk —- (ﬁ)ija

SyWi” gy an' kT
where r;; = r¥ jk denotes the Ricci tensor of the Levi-Civita connection attached to g.
By applying the results in [3], we can state:

Proposition 2. The Einstein equations associated to the metrical N- linear connection

D are
1
Rij —5(r + S)gw = H(go-)
1
P =rT i;
(an? H(lO i

(‘%zj — %('I“ —+ S)hU = /1(,1]1—)1']', o = 1,2,

= T y=T=Ty=Ty=Ti=0.
7 e @Y Y @)

7 The case of the g — g — h-metric

Proposition 3. Now, let the metric structure ofm be given by
G = gi;(2)de’ © da? + gij(x) oy @ oy + Eij (yM)oy @ @ 5y

where g 1s a Riemannian metric on M and h is as in (9). Then, G is h-, vi- Riemannian
and vo-locally Minkovsk:.

In order to determine the components of the Ricci tensor, we first have to compute
the coefficients of the canonical N-linear connection in our case. We have:

szk :”Yijka le—L k() ij_L]k(xy())

(00) (10)”7 10y’ (20) (20)
S = G =0 Gy _hil(s”“hﬂ

ct = (O = C”T —
0% T a2 ik

Using the expressions above, we obtain
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Proposition 4. All the components of the Ricci tensor of the N-linear connection D
vanish, except

| 56 l
Ric (D) (@, @) = (£)Z jl =:Tij,

where 1;; denotes the Ricci tensor of the Levi-Civita connection of the metric g on M.

the

As a consequence, the Einstein equations can be written in this case as:

Ty — 57“91‘3‘ = /’v(g)ij,

other components of the energy-momentum tensor being identically 0. The equations

above are exactly the Einstein equations of the Levi-Civita connection V of g = g(z).
Obviously, the energy conservation law is satisfied.
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