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In the first part of this work a real axis of the space associated with the H3 algebra and
the lines parallel to this axis are interpreted as the world lines of resting particles; surface of
simultaneity is used for introduction of a distance between the real axis and a line parallel
thereto. The coordinate system similar to a polar one can be introduced on this surface such
that this allows us to reveal its simplest invariant transformations. In the second part of this
paper the Lorentz transformations in form of special kind of rotations in the space associated
with H4 algebra are presented.

Introduction

The H3 and H4 algebras belong to the commutative–associative algebras of the Hn

type which are of the simplest structure. These algebras are characterized by some pre-
ferred basis. The multiplication of numbers is realized in terms of this basis in a compo-
nentwise manner similarly to the addition in arbitrary algebras. On the other side, in Hn

type algebras, which can be called hyperbolic, H3 and H4 algebras directly follow after
the algebras of real (H1) and double (H2) numbers, which possessed important properties
for their physical applications [6, 11]. We set forth an assumption of ”inheriting” these
properties by 3- and 4- dimensional algebras under consideration. As a motivation of
this assumption we recall the relation between Berwald–Moor’s metrics and H4 algebra in
Finsler generalization of the relativity theory [1]. From the point of view of possible appli-
cations, hyperbolic H4 algebra is the most promising one because the n = 4 dimensional
spaces have the topological preference [7]. However, H3 algebra possesses one evident
advantage. It is possible to use the computer visualization animation for figures, surfaces,
and lines in the three dimensional metrical space associated with this algebra. Although it
is not worth overestimating the analytical capacities of such applications, it gets a special
visuality to geometric properties of this space. Therefore a sufficiently general approach
to physical treatment of the hyperbolic space properties, offered in the first part of this
paper, is represented for a space accounted with H3 algebra. Its properties give the cube
of norm as

|A|3 = |a1a2a3|,
where ai are components of the vector in the preferred basis, combined from three numbers
ei, where i = 1, 2, 3, with properties (ei)

2 = ei, ei · ej = 0 when i 6= j. Real numbers on a
line can be shared in two classes: they are positive numbers, placed on the right side from
zero, and the negative ones, placed on the left side from zero. Two isotropic lines in the
double numbers algebra divide the pseudo-euclidian plane into 22 quadrants. Similarly to
this the associated space is divided into 23 octants, and for all numbers appropriated to
one octant points it is typical that the same sign combination of components is taken with
respect to the preferred basis. The boundaries of the octants are three isotropic planes
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with equations ai = 0, where i = 1, 2, 3. It will be noted also that since a hyperbolic
algebras are algebras with a unity, defined by an expression

1 = e1 + e2 + · · ·+ en,

two octants of the treated space can be preferably be selected. They are the octants,
containing 1 and -1; they are characterized by numbers with all positive or all negative
components, respectively.

Using considered algebras requires an availability of euclidian or pseudo-euclidian
properties. In the order of algebras: the Dirac algebra [2], quaternions [3], biquaternions
[5] – the existence of such properties provides a classical appearance of the norm of the
number. However, there is a slight amount of such algebras, but amongst commutative-
associative algebras only the double number algebra belongs to such class, in which a
square of the norm of the numbers is given by

|A|2 = |(a1)2 − (a2)2|

(see [4]). Chronogeometry method [8], [12] gives an other opportunity to establishing
properties which are similar with the properties of euclidian or pseudo-euclidian spaces,
in the spaces associated with the considered algebras; the first part of this paper is devoted
to application of this method to H3. Some more opportunity to establishing the sought
properties appears on application of symmetric polyform associated with the algebra [9],
which, for example, has the following form for H3 algebra:

(A,B,C) =
1

3!
(a1b2c3 + · · ·+ a3b2c1).

The second part of this paper is connected with such opportunity applied to H4 alge-
bra, where the form having appearance as pseudo-euclidian metric is determined by a
polylinear form of four vectors.

1. A simultaneity surface in the commutative–associative algebras (as exam-
plified by H3)

1.1. Axiomatics

We shall treat the following statements, playing the role of axioms, as a principle to
interpret physically the properties of the considered algebras class.

1. It is possible to connect an algebra number with some spatial-temporal event.

2. The real axis of the space, which direction is given by means of the unity of the
algebras, is treated as a temporal axis, while the norm of the number is interpreted as an
observer’s time interval whose world line coincides with the vector corresponded to this
number.

3. The increase of a relative velocity of particle or signal results in increasing an
inclination of tangent line to the particles world line in the given point to the observer
world line, and resting material points have world lines which are parallel to the observer
line.

4. Light signals, which have a maximal velocity, are connected with isotropic hy-
persurfaces of the algebra; and it is supposed that the velocity of the light signals does
not depend on their propagation direction. According to these statements two selected
octants with 1 and −1, which are referred to above, are the analogs of the cone of the
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future and the past Minkowski space in the space associated with H3 algebra, respectively.
Contrary to the Minkowski space in the considered space a domain outside these cones
also possesses isotropic directions, because consists of six side cones. In this paper we
restrict our attention to the most common particular case, when the observer world line
coincides with the real axis.

1.2. Exponential form of the H3 algebra number representation with respect to the
basis (1, j, k)

Any number in the selected basis is represented as:

A = a1 · e1 + a2 · e2 + a3 · e3.

For an exponential function in terms of this basis the following formula takes place:

exp(a1 · e1 + a2 · e2 + a3 · e3) = exp(a1) · e1 + exp(a2) · e2 + exp(a3) · e3. (1)

Since in the considered algebra we get |A|3 = |a1a2a3|, any number with ai > 0 is
represented as

A = |A| · exp(b1e1 + b2e2 + b3e3)

with a restriction
b1 + b2 + b3 = 0, (2)

which implies the identity:

| exp(b1e1 + b2e2 + b3e3)| = 1.

The other basis of the algebra is composed from vectors:





1 = e1 + e2 + e3

j = sin ϕ0 · e1 + sin(ϕ0 + 2π/3) · e2 + sin(ϕ0 + 4π/3) · e3

k = cos ϕ0 · e1 + cos(ϕ0 + 2π/3) · e2 + cos(ϕ0 + 4π/3) · e3

(3)

The vectors appearing in this basis are mutually orthogonal (in the usual euclidian
sense), while an arbitrary parameter ϕ0 can be treated in a certain sense as the angle
of a simultaneous rotation of a pair of vectors j, k around the real axis. If t, x, y – are
coordinates of the number in a new basis, then according to the transformation rules of
coordinates of the number we have a system in the other basis:





a1 = t + sin ϕ0 · x + cos ϕ0 · y
a2 = t + sin(ϕ0 + 2π/3) · x + cos(ϕ0 + 2π/3) · y
a3 = t + sin(ϕ0 + 4π/3) · x + cos(ϕ0 + 4π/3) · y

(4)

from which it follows that t = (a1 +a2 +a3)/3. Therefore by (2) the number representable
in a exponential form in the basis (1,j,k) is given by

A = |A| · eα·j+β·k.

If we modify this exponential representation, introducing an definition
ρ =

√
α2 + β2, we obtain

A = |A| · eρ(cos ϕ·j+sin ϕ·k). (5)
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Thus, in agreement with (5), the number at this representation is given by three parame-
ters: the norm of the number |A|, the ”radial coordinate” ρ, and the ”angle coordinate”
ϕ. Making use of (1) and (3), formula (5) takes simple and elegant form in components:





a1 = |A| · exp(ρ sin[ϕ0 + ϕ])

a2 = |A| · exp(ρ sin[ϕ0 + 2π/3 + ϕ])

a3 = |A| · exp(ρ sin[ϕ0 + 4π/3 + ϕ])

1.3. Method of setting the distance between the real axis and the parallel line.

For determination of the distance between the world lines of resting particles, one of
which lying on the real axis, we use the chronogeometry method. Consider the exchange
of signals with the constant velocity ν ≤ c; for simplicity we shall arrange point-events of
signal transmission and the reception of the reverse signal on the real axis symmetrically
with respect to zero time moment. Because of an equality of lengths of straight and
reverse signals velocity |B − A1| = |A2 −B|, so we have:

(a1 + T )(a2 + T )(a3 + T ) = (T − a1)(T − a2)(T − a3),

where ai + T > 0, T − ai > 0, which after expanding takes form:

(a1 + a2 + a3) · T 2 + a1a2a3 = 0. (6)
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A

B

Figure 1: The measuring of a distance between the world lines by pre-light signals exchange.

The multitude of points-events satisfied to equation (6) form a surface of a simul-
taneity: it is for the observer on the real axis, being in the point with T coordinate,
all these events are taking place in the same zero moment of time. Point A = (0, 0, 0)
belongs to the simultaneity surface, and the tangent plane to this surface in the origin
has an equation:

a1 + a2 + a3 = 0. (7)

Substitution of (4) into (6) allows to obtain the equation of the simultaneity surface in
form of the dependence of the time of the signal passing (on a clock of resting observer)
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T from introduced coordinates {t, x, y} of point of the simultaneity surface:

T 2 =
1

12
(x2 + y2)− 1

3

{
t2 +

1

t

[
3

4
xy(y · sin 3ϕ0 − x · cos 3ϕ0)

+ x3 sin ϕ0 sin(ϕ0 + 2π/3) sin(ϕ0 + 4π/3) + y3 cos ϕ0 cos(ϕ0 + 2π/3) cos(ϕ0 + 4π/3)
]}

.

According to this equation (and similar equations for other algebras, in particularly,
H4 algebra) the first items on the right side have an euclidian form, and then they domi-
nate on other remaining items, square of travel time of signal depends linearly on square
of the euclidian distance in the world lines space, which can be useful for the next physical
interpretations.

1.4. The system of curvilinear coordinates of the simultaneity surface and the trans-
formations mapping it to itself

Keeping in mind an important of an invariant transformations in modern physics, we
shall briefly consider the topic of finding the transformations of the simultaneity surface,
mapping it to itself. We introduce two-dimension coordinate system {ρ, ϕ} on this surface,
somewhat analogous to polar coordinate system on two-dimension plane to get:





a1 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+ϕ) − T,

a2 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+2π/3+ϕ) − T,

a3 = (T − ρ) · eR(ρ,ϕ) sin(ϕ0+4π/3+ϕ) − T,

(8)

where the function R = R(ρ, ϕ) taken from transcendent equation is obtaining by using
the coordinates (8) into (6):

Z̄3 − Z̄2
[
e−R sin(ϕ0+ϕ) + e−R sin(ϕ0+2π/3+ϕ) + e−R sin(ϕ0+4π/3+ϕ)

]

+2Z̄
[
eR sin(ϕ0+ϕ) + eR sin(ϕ0+2π/3+ϕ) + eR sin(ϕ0+4π/3+ϕ)

]− 4 = 0,

where Z̄ = (T − ρ)/T .

Figure 2: Curvilinear coordinates system ρ, φ on simultaneity surface.



68 S. V. Lebedev Properties of spaces associated with commutative-associative ...

In the vicinity of zero at a1, a2, a3 ¿ 1, R ¿ 1, ρ ¿ 1, the equations (8) are got
simplified:





a1 ∼= R · T · sin(ϕ0 + ϕ),

a2 ∼= R · T · sin(ϕ0 + 2π/3 + ϕ),

a3 ∼= R · T · sin(ϕ0 + 4π/3 + ϕ),

so that
a1 + a2 + a3 ∼= 0 and (a1)2 + (a2)2 + (a3)2 ∼= (R · T )2. (9)

Thus, according to (9), the coordinate system (8) is distinguished: in the vicinity
of zero the parameter R is proportional to euclidian distance from a point, located on the
simultaneity surface, to the center of this surface, in which R = 0.

Then independent transformations of the simultaneity surface we seek are ”rotations”
by angle ∆ϕ(ϕ → ϕ + ∆ϕ) and ”a similarity transformations” with a coefficient K(ρ →
K · ρ).

2. The representation a Lorentz transformations by rotations in the space,
associated with H4 algebra.

Following [10], we define the inner product of two arbitrary (with positive values of
components) vectors A and B in the space under consideration by a symmetric four-form
of H4 space as:

(A,B) :=
(A, A,B,B)

|A| · |B| .

The inner product of two vectors satisfying to properties of positiveness, homogeneity,
and normality:
1. (A, B) > 0;
2. (kA, B) = (A, kB) = k(A,B);
3. (A, A) = |A|2.

The inner product of units vectors a = A/|A| and b = B/|B| may be regarded as an
angle characteristic, setting a relation between two directions defined by these vectors –
it is expressed via quotient components of these vectors (d = b/a):

(a, b) = (d1d2 + d1d3 + . . . d3d4)/6. (10)

Consider a basis in the space associated with H4 algebra, consisting of these vectors:




1 = e1 + e2 + e3 + e4,

j′ = 3e1 − e2 − e3 − e4,

k′ =
√

2(2e2 − e3 − e4),

l′ =
√

6(e3 − e4).

We denote coordinates of relation of two considered vectors in a new basis via
td, xd, yd, zd and expressing (10) via these components, we obtain:

(a, b) = t2d − x2
d − y2

d − z2
d.

We shall denote the nonlinear transformation of 4-space, associated with H4 algebra,
which remains all vectors in the direction setting by vector A in rest, and retains the
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introduced inner product, as a rotation of vector B round a vector A. Thus, in addition
to the other representations of Lorentz group [13] the representation by rotations round
arbitrary time-like axis in the space, associated with H4 algebra, can be used.

Results and conclusions

The method of determination of the distances between the world lines introduced
for the space associated with a commutative-associative H3 algebra (or H4) allows to
distinguish ”a euclidian part”.

A new geometric interpretation of the Lorentz transformations as rotations in the
space connected with algebra H4 is obtained. Arbitrary setting of a rotation axis is
possible; all said above gives a hope on the application of such new interpretation in
relativity physics.
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